Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 10(8): e1004504, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25101671

RESUMO

Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E. coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative Ter macrodomain - Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.


Assuntos
Proteínas de Transporte/genética , Ciclo Celular/genética , Divisão Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular/genética , Proteínas Cromossômicas não Histona/genética , Escherichia coli/crescimento & desenvolvimento , Indóis , Imagem Óptica
2.
mBio ; 4(6): e00800-13, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24302254

RESUMO

UNLABELLED: Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication termination region of the chromosome to midcell, where it facilitates chromosome unlinking by activating XerCD-dif site-specific recombination. Therefore, FtsK coordinates the late stages of chromosome segregation with cell division. Although the translocase is known to act as a hexamer on DNA, it is unknown when and how hexamers form, as is the number of FtsK molecules in the cell and within the divisome. Using single-molecule live-cell imaging, we show that newborn Escherichia coli cells growing in minimal medium contain ~40 membrane-bound FtsK molecules that are largely monomeric; the numbers increase proportionately with cell growth. After recruitment to the midcell, FtsK is present only as hexamers. Hexamers are observed in all cells and form before any visible sign of cell constriction. An average of 7 FtsK hexamers per cell are present at midcell, with the N-terminal domain being able to hexamerize independently of the translocase. Detergent-solubilized and purified FtsK N-terminal domains readily form hexamers, as determined by in vitro biochemistry, thereby supporting the in vivo data. The hexameric state of the FtsK N-terminal domain at the division site may facilitate assembly of a functional C-terminal DNA translocase on chromosomal DNA. IMPORTANCE: In the rod-shaped bacterium Escherichia coli, more than a dozen proteins act at the cell center to mediate cell division, which initiates while chromosome replication and segregation are under way. The protein FtsK coordinates cell division with the late stages of chromosome segregation. The N-terminal part of FtsK is membrane embedded and acts in division, while the C-terminal part forms a hexameric ring on chromosomal DNA, which the DNA can translocate rapidly to finalize chromosome segregation. Using quantitative live-cell imaging, which measures the position and number of FtsK molecules, we show that in all cells, FtsK hexamers form only at the cell center at the initiation of cell division. Furthermore, the FtsK N-terminal portion forms hexamers independently of the C-terminal translocase.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica , Humanos , Domínios e Motivos de Interação entre Proteínas
3.
mBio ; 4(6): e00856-13, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24327341

RESUMO

UNLABELLED: Bacterial cell division initiates with the formation of a ring-like structure at the cell center composed of the tubulin homolog FtsZ (the Z-ring), which acts as a scaffold for the assembly of the cell division complex, the divisome. Previous studies have suggested that the divisome is initially composed of FtsZ polymers stabilized by membrane anchors FtsA and ZipA, which then recruit the remaining division proteins. The MinCDE proteins prevent the formation of the Z-ring at poles by oscillating from pole to pole, thereby ensuring that the concentration of the Z-ring inhibitor, MinC, is lowest at the cell center. We show that prior to septum formation, the early-division proteins ZipA, ZapA, and ZapB, along with FtsZ, assemble into complexes that counter-oscillate with respect to MinC, and with the same period. We propose that FtsZ molecules distal from high concentrations of MinC form relatively slowly diffusing filaments that are bound by ZapAB and targeted to the inner membrane by ZipA or FtsA. These complexes may facilitate the early stages of divisome assembly at midcell. As MinC oscillates toward these complexes, FtsZ oligomerization and bundling are inhibited, leading to shorter or monomeric FtsZ complexes, which become less visible by epifluorescence microscopy because of their rapid diffusion. Reconstitution of FtsZ-Min waves on lipid bilayers shows that FtsZ bundles partition away from high concentrations of MinC and that ZapA appears to protect FtsZ from MinC by inhibiting FtsZ turnover. IMPORTANCE: A big issue in biology for the past 100 years has been that of how a cell finds its middle. In Escherichia coli, over 20 proteins assemble at the cell center at the time of division. We show that the MinCDE proteins, which prevent the formation of septa at the cell pole by inhibiting FtsZ, drive the counter-oscillation of early-cell-division proteins ZapA, ZapB, and ZipA, along with FtsZ. We propose that FtsZ forms filaments at the pole where the MinC concentration is the lowest and acts as a scaffold for binding of ZapA, ZapB, and ZipA: such complexes are disassembled by MinC and reform within the MinC oscillation period before accumulating at the cell center at the time of division. The ability of FtsZ to be targeted to the cell center in the form of oligomers bound by ZipA and ZapAB may facilitate the early stages of divisome assembly.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(18): 6957-62, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509007

RESUMO

Cell division in typical rod-shaped bacteria such as Escherichia coli shows a remarkable plasticity in being able to adapt to a variety of irregular cell shapes. Here, we investigate the roles of the Min system and the nucleoid-occlusion factor SlmA in supporting this adaptation. We study "squeezed" E. coli in narrow nanofabricated channels where these bacteria exhibit highly irregular shapes and large volumes. Despite the severely anomalous morphologies we find that most of these bacteria maintain their ability to divide into two equally sized daughters with an accuracy comparable to that of normal rod-shaped cells (about 4%). Deletion of either slmA or minC shows that the molecular systems associated with these genes are largely dispensable for accurate cell division in these irregular cell shapes. Using fluorescence time-lapse microscopy, we determine that the functionality of the Min system is affected by the cell shape, whereas the localization of a nucleoid relative to the cell division proteins (the divisome) remains unperturbed in a broad spectrum of morphologies, consistent with nucleoid occlusion. The observed positioning of the nucleoid relative to the divisome appears not to be affected by the nucleoid-occlusion factor SlmA. The current study underscores the importance of nucleoid occlusion in positioning the divisome and shows that it is robust against shape irregularities.


Assuntos
Divisão Celular/fisiologia , Escherichia coli K12/citologia , Escherichia coli K12/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Fenômenos Biofísicos , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Proteínas de Ligação a DNA , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Deleção de Genes , Genes Bacterianos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo
5.
Science ; 335(6072): 1103-6, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383849

RESUMO

Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Transcrição Gênica , Transcriptoma , Adaptação Fisiológica , Algoritmos , Sítios de Ligação , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulon , Fator sigma/metabolismo , Regiões Terminadoras Genéticas
6.
Microbiology (Reading) ; 157(Pt 9): 2470-2484, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21636651

RESUMO

The high phosphate content of Bacillus subtilis cell walls dictates that cell wall metabolism is an important feature of the PhoPR-mediated phosphate limitation response. Here we report the expression profiles of cell-envelope-associated and PhoPR regulon genes, determined by live cell array and transcriptome analysis, in exponentially growing and phosphate-limited B. subtilis cells. Control by the WalRK two-component system confers a unique expression profile and high level of promoter activity on the genes of its regulon with yocH and cwlO expression differing both qualitatively and quantitatively from all other autolysin-encoding genes examined. The activity of the PhoPR two-component system is restricted to the phosphate-limited state, being rapidly induced in response to the cognate stimulus, and can be sustained for an extended phosphate limitation period. Constituent promoters of the PhoPR regulon show heterogeneous induction profiles and very high promoter activities. Phosphate-limited cells also show elevated expression of the actin-like protein MreBH and reduced expression of the WapA cell wall protein and WprA cell wall protease indicating that cell wall metabolism in this state is distinct from that of exponentially growing and stationary-phase cells. The PhoPR response is very rapidly deactivated upon removal of the phosphate limitation stimulus with concomitant increased expression of cell wall metabolic genes. Moreover expression of genes encoding enzymes involved in sulphur metabolism is significantly altered in the phosphate-limited state with distinct perturbations being observed in wild-type 168 and AH024 (ΔphoPR) cells.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Expressão Gênica , Fosfatos/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Heterogeneidade Genética , Análise em Microsséries , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Transcriptoma
7.
Mol Microbiol ; 81(1): 157-78, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21542863

RESUMO

The vancomycin resistance operons from Enterococci, Staphylococci and Actinomycetes encode a VanRS two-component signal transduction system (TCS) and a suite of enzymes to modify the peptidoglycan biosynthetic precursor lipid II and to eliminate the D-Ala-D-Ala from the cell. Commingling of these regulatory and enzymatic activities with host functions has the potential to significantly impact host gene expression and cell wall metabolism. Here we report the effects of individually expressing the VanR(B) S(B) TCS and the VanY(B) WH(B) BX(B) resistance proteins in Bacillus subtilis. VanY(B) WH(B) BX(B) expression confers resistance to 2 µg ml(-1) of vancomycin with concomitant reduced Van-FL staining and leads to a cell division defect. In contrast to E. faecalis and S. aureus, VanS(B) is active in B. subtilis without vancomycin addition. Individual expression of the VanR(B) S(B) TCS and the VanY(B) WH(B) BX(B) resistance proteins repress and increase, respectively, expression of PhoPR regulon genes in the phosphate-limited state. When vancomycin-resistant cells are exposed to elevated vancomycin levels, mutant strains with increased resistance to vancomycin and a growth dependency on vanY(B) WH(B) BX(B) expression frequently arise. Mutation of the endogenous Ddl ligase is the necessary and sufficient cause of both phenotypes. We discuss how these effects may influence establishment of van operons in new host bacteria.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Expressão Gênica , Resistência a Vancomicina , Vancomicina/farmacologia , Antibacterianos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus/genética
8.
Plasmid ; 64(3): 143-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600285

RESUMO

We report the development of a suite of six integrative vectors for construction of single copy transcriptional fusions with the gfpmut3, cfp and iyfp reporter genes in Bacillus subtilis. The promoter fusions are constructed using the highly efficient ligation-independent cloning (LIC) technique making them suitable for high-throughput applications. The plasmids insert into the chromosome by a double cross-over event at the amyE or bglS loci and integration at each site can be verified by a plate-based screening assay. The vectors allow expression of two different promoters to be determined in the same strain using the cfp and iyfp reporter genes since CFP and iYFP are spectrally distinct and have comparable half-lives of approximately 2h in exponentially growing B. subtilis cells. We demonstrate the versatility of these vectors by measuring expression of the tuaA and phoA operons singularly and in combination, during growth in phosphate limiting conditions.


Assuntos
Bacillus subtilis/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Mutagênese Insercional/métodos , Plasmídeos/genética , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Reporter , Proteínas Luminescentes/genética , Reação em Cadeia da Polimerase , Transcrição Gênica
9.
Mol Microbiol ; 75(4): 972-89, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20487291

RESUMO

In Bacillus subtilis, the WalRK (YycFG) two-component system controls peptidoglycan metabolism in exponentially growing cells while PhoPR controls the response to phosphate limitation. Here we examine the roles of WalRK and PhoPR in peptidoglycan metabolism in phosphate-limited cells. We show that B. subtilis cells remain viable in a phosphate-limited state for an extended period and resume growth rapidly upon phosphate addition, even in the absence of a PhoPR-mediated response. Peptidoglycan synthesis occurs in phosphate-limited wild-type cells at approximately 27% the rate of exponentially growing cells, and at approximately 18% the rate of exponentially growing cells in the absence of PhoPR. In phosphate-limited cells, the WalRK regulon genes yocH, cwlO(yvcE), lytE and ydjM are expressed in a manner that is dependent on the WalR recognition sequence and deleting these genes individually reduces the rate of peptidoglycan synthesis. We show that ydjM expression can be activated by PhoP approximately P in vitro and that PhoP occupies its promoter in phosphate-limited cells. However, iseA(yoeB) expression cannot be repressed by PhoP approximately P in vitro, but can be repressed by non-phosphorylated WalR in vitro. Therefore, we conclude that peptidoglycan metabolism is controlled by both WalRK and PhoPR in phosphate-limited B. subtilis cells.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Fosfatos/metabolismo , Proteínas Quinases/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Peptidoglicano/genética , Fosforilação , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Regulon
10.
Mol Microbiol ; 70(6): 1307-22, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019149

RESUMO

The WalK/WalR (aka YycG/YycF) two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved and specific to low G+C Gram-positive bacteria, including a number of important pathogens. An unusual feature is that this system is essential for viability in most of these bacteria. Recent studies have revealed conserved functions for this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism, that we have accordingly renamed WalK/WalR. Here we review the cellular role of the WalK/WalR TCS in different bacterial species, focusing on the function of genes in its regulon, as well as variations in walRK operon structure and the composition of its regulon. We also discuss the nature of its essentiality and the potential type of signal being sensed. The WalK histidine kinase of B. subtilis has been shown to localize to the divisome and we suggest that the WalKR system acts as an information conduit between extracytoplasmic cellular structures and intracellular processes required for their synthesis, playing a vital role in effectively co-ordinating peptidoglycan plasticity with the cell division process.


Assuntos
Parede Celular/metabolismo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Óperon/fisiologia , Proteínas Quinases/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Parede Celular/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Histidina Quinase , Homeostase , Peptidoglicano/metabolismo , Proteínas Quinases/genética , Regulon , Transdução de Sinais
11.
Mol Microbiol ; 65(1): 180-200, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17581128

RESUMO

Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show that YycFG is a regulator of cell wall metabolism. We have identified five new members of the YycFG regulon: YycF activates expression of yvcE, lytE and ydjM and represses expression of yoeB and yjeA. YvcE(CwlO) and LytE encode endopeptidase-type autolysins that participate in peptidoglycan synthesis and turnover respectively. We show that a yvcE lytE double mutant strain is not viable and that cells lacking LytE and depleted for YvcE exhibit defects in lateral cell wall synthesis and cell elongation. YjeA encodes a peptidoglycan deacetylase that modifies peptidoglycan thereby altering its susceptibility to lysozyme digestion and YdjM is also predicted to have a role in cell wall metabolism. A genetic analysis shows that YycFG essentiality is polygenic in nature, being a manifestation of disrupted cell wall metabolism caused by aberrant expression of a number of YycFG regulon genes.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
12.
J Bacteriol ; 186(18): 6003-14, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15342569

RESUMO

Bacillus subtilis implements several adaptive strategies to cope with nutrient limitation experienced at the end of exponential growth. The DegS-DegU two-component system is part of the network involved in the regulation of postexponential responses, such as competence development, the production of exoenzymes, and motility. The degU32(Hy) mutation extends the half-life of the phosphorylated form of DegU (DegU-P); this in turn increases the production of alkaline protease, levan-sucrase, and other exoenzymes and inhibits motility and the production of flagella. The expression of the flagellum-specific sigma factor SigD, of the flagellin gene hag, and of the fla-che operon is strongly reduced in a degU32(Hy) genetic background. To investigate the mechanism of action of DegU-P on motility, we isolated mutants of degU32(Hy) that completely suppressed the motility deficiency. The mutations were genetically mapped and characterized by PCR and sequencing. Most of the mutations were found to delete a transcriptional termination signal upstream of the main flagellar operon, fla-che, thus allowing transcriptional readthrough from the cod operon. Two additional mutations improved the sigmaA-dependent promoter sequence of the fla-che operon. Using an electrophoretic mobility shift assay, we have demonstrated that purified DegU binds specifically to the PA promoter region of the fla-che operon. The data suggest that DegU represses transcription of the fla-che operon, and they indicate a central role of the operon in regulating the synthesis and assembly of flagella.


Assuntos
Adaptação Fisiológica/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Fusão Gênica Artificial , Bacillus subtilis/genética , Quimiotaxia/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Flagelos/genética , Flagelos/metabolismo , Genes Bacterianos , Genes Reporter , Movimento , Mutação , Fosforilação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fator sigma/metabolismo , Transdução de Sinais/genética , Transcrição Gênica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...