Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(10): 1470-1482, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494666

RESUMO

Immunomodulation combined with antigen therapy holds great promise to arrest autoimmune type 1 diabetes, but clinical translation is hampered by a lack of prognostic biomarkers. Low-dose anti-CD3 plus Lactococcus lactis bacteria secreting proinsulin and IL-10 reversed new-onset disease in nonobese diabetic (NOD) mice, yet some mice were resistant to the therapy. Using miRNA profiling, six miRNAs (i.e., miR-34a-5p, miR-125a-3p, miR-193b-3p, miR-328, miR-365-3p, and miR-671-3p) were identified as differentially expressed in plasma of responder versus nonresponder mice before study entry. After validation and stratification in an independent cohort, plasma miR-193b-3p and miR-365-3p, combined with age and glycemic status at study entry, had the best power to predict, with high sensitivity and specificity, poor response to the therapy. These miRNAs were highly abundant in pancreas-infiltrating neutrophils and basophils with a proinflammatory and activated phenotype. Here, a set of miRNAs and disease-associated parameters are presented as a predictive signature for the L. lactis-based immunotherapy outcome in new-onset type 1 diabetes, hence allowing targeted recruitment of trial participants and accelerated trial execution. ARTICLE HIGHLIGHTS: Low-dose anti-CD3 combined with oral gavage of genetically modified Lactococcus lactis bacteria secreting human proinsulin and IL-10 holds great promise to arrest autoimmune type 1 diabetes, but the absence of biomarkers predicting therapeutic success hampers clinical translation. A set of cell-free circulation miRNAs together with age and glycemia at baseline predicts a poor response after L. lactis-based immunotherapy in nonobese mice with new-onset diabetes. Pancreas-infiltrating neutrophils and basophils are identified as potential cellular sources of discovered miRNAs. The prognostic signature could guide targeted recruitment of patients with newly diagnosed type 1 diabetes in clinical trials with the L. lactis-based immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Lactococcus lactis , MicroRNAs , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 1/terapia , Interleucina-10 , Lactococcus lactis/genética , Proinsulina/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Biomarcadores , Camundongos Endogâmicos NOD , Imunoterapia
2.
J Clin Endocrinol Metab ; 109(1): 183-196, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37474341

RESUMO

CONTEXT: Validated assays to measure autoantigen-specific T-cell frequency and phenotypes are needed for assessing the risk of developing diabetes, monitoring disease progression, evaluating responses to treatment, and personalizing antigen-based therapies. OBJECTIVE: Toward this end, we performed a technical validation of a tetramer assay for HLA-DRA-DRB1*04:01, a class II allele that is strongly associated with susceptibility to type 1 diabetes (T1D). METHODS: HLA-DRA-DRB1*04:01-restricted T cells specific for immunodominant epitopes from islet cell antigens GAD65, IGRP, preproinsulin, and ZnT8, and a reference influenza epitope, were enumerated and phenotyped in a single staining tube with a tetramer assay. Single and multicenter testing was performed, using a clone-spiked specimen and replicate samples from T1D patients, with a target coefficient of variation (CV) less than 30%. The same assay was applied to an exploratory cross-sectional sample set with 24 T1D patients to evaluate the utility of the assay. RESULTS: Influenza-specific T-cell measurements had mean CVs of 6% for the clone-spiked specimen and 11% for T1D samples in single-center testing, and 20% and 31%, respectively, for multicenter testing. Islet-specific T-cell measurements in these same samples had mean CVs of 14% and 23% for single-center and 23% and 41% for multicenter testing. The cross-sectional study identified relationships between T-cell frequencies and phenotype and disease duration, sex, and autoantibodies. A large fraction of the islet-specific T cells exhibited a naive phenotype. CONCLUSION: Our results demonstrate that the assay is reproducible and useful to characterize islet-specific T cells and identify correlations between T-cell measures and clinical traits.


Assuntos
Diabetes Mellitus Tipo 1 , Influenza Humana , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Estudos Transversais , Cadeias alfa de HLA-DR , Linfócitos T
3.
Biology (Basel) ; 12(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372166

RESUMO

Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.

4.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174719

RESUMO

BACKGROUND AND AIMS: Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS: In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS: Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION: The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.


Assuntos
Diabetes Mellitus Tipo 1 , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteoma/metabolismo , Proteômica , Neutrófilos/metabolismo
5.
Clin Exp Immunol ; 210(2): 128-140, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208466

RESUMO

Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Neutrófilos , Autoimunidade
6.
Diabetes ; 70(2): 516-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203696

RESUMO

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Ornitina/análogos & derivados , Pâncreas/efeitos dos fármacos , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Ornitina/farmacologia , Pâncreas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...