Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 408(1): 126-39, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26526197

RESUMO

Wnt ligands regulate heart morphogenesis but the underlying mechanisms remain unclear. Two Formin-related proteins, DAAM1 and 2, were previously found to bind the Wnt effector Disheveled. Here, since DAAM1 and 2 nucleate actin and mediate Wnt-induced cytoskeletal changes, a floxed-allele of Daam1 was used to disrupt its function specifically in the myocardium and investigate Wnt-associated pathways. Homozygous Daam1 conditional knockout (CKO) mice were viable but had misshapen hearts and poor cardiac function. The defects in Daam1 CKO mice were observed by mid-gestation and were associated with a loss of protrusions from cardiomyocytes invading the outflow tract. Further, these mice exhibited noncompaction cardiomyopathy (NCM) and deranged cardiomyocyte polarity. Interestingly, Daam1 CKO mice that were also homozygous for an insertion disrupting Daam2 (DKO) had stronger NCM, severely reduced cardiac function, disrupted sarcomere structure, and increased myocardial proliferation, suggesting that DAAM1 and DAAM2 have redundant functions. While RhoA was unaffected in the hearts of Daam1/2 DKO mice, AKT activity was lower than in controls, raising the issue of whether DAAM1/2 are only mediating Wnt signaling. Daam1-floxed mice were thus bred to Wnt5a null mice to identify genetic interactions. The hearts of Daam1 CKO mice that were also heterozygous for the null allele of Wnt5a had stronger NCM and more severe loss of cardiac function than Daam1 CKO mice, consistent with DAAM1 and Wnt5a acting in a common pathway. However, deleting Daam1 further disrupted Wnt5a homozygous-null hearts, suggesting that DAAM1 also has Wnt5a-independent roles in cardiac development.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Miocárdio/metabolismo , Sarcômeros/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Proliferação de Células , Citoesqueleto/metabolismo , Embrião de Mamíferos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Quinase 3 da Glicogênio Sintase/metabolismo , Testes de Função Cardíaca , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Heterozigoto , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Morfogênese , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Wnt , Proteína Wnt-5a , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Dev Biol ; 398(1): 80-96, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25482987

RESUMO

Wnt proteins regulate cell behavior via a canonical signaling pathway that induces ß-catenin dependent transcription. It is now appreciated that Wnt/ß-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating ß-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over ß-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit ß-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of ß-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit ß-catenin to promote SHF development through Caspase-dependent Akt degradation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Caspases/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Miocárdio/citologia , Fosforilação , Reação em Cadeia da Polimerase , Gravidez , Prenhez , Transdução de Sinais , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...