Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(37): e2203409, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35957538

RESUMO

As a promising pathway toward low-cost, long-duration energy storage, rechargeable sodium batteries are of increasing interest. Batteries that incorporate metallic sodium as anode promise a high theoretical specific capacity of 1166 mAh g-1 , and low reduction potential of -2.71 V. The high reactivity and poor electrochemical reversibility of sodium anodes render sodium metal anode (SMA) cells among the most challenging for practical implementation. Here, the failure mechanisms of Na anodes are investigated and the authors report that loss of morphological control is not the fundamental cause of failure. Rather, it is the inherently poor anchoring/root structure of electrodeposited Na to the electrode substrate that leads to poor reversibility and cell failure. Poorly anchored Na deposits are prone to break away from the current collector, producing orphaning and poor anode utilization. Thin metallic coatings in a range of chemistries are proposed and evaluated as SMA substrates. Based on thermodynamic and ion transport considerations, such substrates undergo reversible alloying reactions with Na and are hypothesized to promote good root growth-regardless of the morphology. Among the various options, Au stands out for its ability to support long Na anode lifetime and high reversibility (Coulombic Efficiency > 98%), for coating thicknesses in the range of 10-1000 nm. As a first step toward evaluating practical utility of the anodes, their performance in Na||SPAN cells with N:P ratio close to 1:1 is evaluated.

2.
Nat Commun ; 12(1): 6034, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654812

RESUMO

Lithium metal is a promising anode for energy-dense batteries but is hindered by poor reversibility caused by continuous chemical and electrochemical degradation. Here we find that by increasing the Li plating capacity to high values (e.g., 10-50 mAh cm-2), Li deposits undergo a morphological transition to produce dense structures, composed of large grains with dominantly (110)Li crystallographic facets. The resultant Li metal electrodes manifest fast kinetics for lithium stripping/plating processes with higher exchange current density, but simultaneously exhibit elevated electrochemical stability towards the electrolyte. Detailed analysis of these findings reveal that parasitic electrochemical reactions are the major reason for poor Li reversibility, and that the degradation rate from parasitic electroreduction of electrolyte components is about an order of magnitude faster than from chemical reactions. The high-capacity Li electrodes provide a straightforward strategy for interrogating the solid electrolyte interphase (SEI) on Li -with unprecedented, high signal to noise. We find that an inorganic rich SEI is formed and is primarily concentrated around the edges of lithium particles. Our findings provide straightforward, but powerful approaches for enhancing the reversibility of Li and for fundamental studies of the interphases formed in liquid and solid-state electrolytes using readily accessible analytical tools.

3.
Small ; 17(33): e2101798, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34228391

RESUMO

Reversible electrodeposition of metals at liquid-solid interfaces is a requirement for long cycle life in rechargeable batteries that utilize metals as anodes. The process has been studied extensively from the perspective of the electrochemical transformations that impact reversibility, however, the fundamental challenges associated with maintaining morphological control when a intrinsically crystalline solid metal phase emerges from an electrolyte solution have been less studied, but provide important opportunities for progress. A crystal growth stabilization method to reshape the initial growth and orientation of crystalline metal electrodeposits is proposed here. The method takes advantage of polymer-salt complexes (PEG-Zn2+ -aX- ) (a = 1,2,3) formed spontaneously in aqueous electrolytes containing zinc (Zn2+ ) and halide (X- ) ions to regulate electro-crystallization of Zn. It is shown that when X = Iodine (I), the complexes facilitate electrodeposition of Zn in a hexagonal closest packed morphology with preferential orientation of the (002) plane parallel to the electrode surface. This facilitates exceptional morphological control of Zn electrodeposition at planar substrates and leads to high anode reversibility and unprecedented cycle life. Preliminary studies of the practical benefits of the approach are demonstrated in Zn-I2 full battery cells, designed in both coin cell and single-flow battery cell configurations.


Assuntos
Galvanoplastia , Zinco , Cristalização , Fontes de Energia Elétrica , Eletrodos
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372134

RESUMO

The physiochemical nature of reactive metal electrodeposits during the early stages of electrodeposition is rarely studied but known to play an important role in determining the electrochemical stability and reversibility of electrochemical cells that utilize reactive metals as anodes. We investigated the early-stage growth dynamics and reversibility of electrodeposited lithium in liquid electrolytes infused with brominated additives. On the basis of equilibrium theories, we hypothesize that by regulating the surface energetics and surface ion/adatom transport characteristics of the interphases formed on Li, Br-rich electrolytes alter the morphology of early-stage Li electrodeposits; enabling late-stage control of growth and high electrode reversibility. A combination of scanning electron microscopy (SEM), image analysis, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry are employed to evaluate this hypothesis by examining the physical-chemical features of the material phases formed on Li. We report that it is possible to achieve fine control of the early-stage Li electrodeposit morphology through tuning of surface energetic and ion diffusion properties of interphases formed on Li. This control is shown further to translate to better control of Li electrodeposit morphology and high electrochemical reversibility during deep cycling of the Li metal anode. Our results show that understanding and eliminating morphological and chemical instabilities in the initial stages of Li electroplating via deliberately modifying energetics of the solid electrolyte interphase (SEI) is a feasible approach in realization of deeply cyclable reactive metal batteries.

5.
Nano Lett ; 20(8): 5749-5758, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32479086

RESUMO

Reactive metals are known to electrodeposit with irregular morphological features on planar substrates. A growing body of work suggest that multiple variables: composition, mechanics, structure, ion transport properties, reductive stability, and interfacial energy of interphases, formed either spontaneously or by design on the metal electrode play important but differentiated roles in regulating these morphologies. We examine the effect of fluorinated thermoset polymer coatings on Li deposition by means of experiment and theoretical linear stability analysis. By tuning the chemistry of the polymer backbone and side chains, we investigate how physical and mechanical properties of polymeric interphases influence Li electrodeposit morphology. It is found that an interplay between elasticity and diffusivity leads to an optimum interphase thickness and that higher interfacial energy augments elastic stresses at a metal electrode to prevent out-of-plane deposition. These findings are explained using linear stability analysis of electrodeposition and provide guidelines for designing polymer interphases to stabilize metal anodes in rechargeable batteries.

6.
Nano Lett ; 19(11): 8191-8200, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31566985

RESUMO

The morphologies that metal electrodeposits form during the earliest stages of electrodeposition are known to play a critical role in the recharge of electrochemical cells that use metals as anodes. Here we report results from a combined theoretical and experimental study of the early stage nucleation and growth of electrodeposited lithium at liquid-solid interfaces. The spatial characteristics of lithium electrodeposits are studied via scanning electron microscopy (SEM) in tandem with image analysis. Comparisons of Li nucleation and growth in multiple electrolytes provide a comprehensive picture of the initial nucleation and growth dynamics. We report that ion diffusion in the bulk electrolyte and through the solid electrolyte interphase (SEI) formed spontaneously on the metal play equally important roles in regulating  Li nucleation and growth. We show further that the underlying physics dictating bulk and surface diffusion are similar across a range of electrolyte chemistries and measurement conditions, and that fluorinated electrolytes produce a distinct flattening of Li electrodeposits at low rates. These observations are rationalized using X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry to probe the interfacial chemistry and dynamics. Our results show that high interfacial energy and high surface ion diffusivity are necessary for uniform Li plating.

7.
Nat Commun ; 10(1): 4398, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562334

RESUMO

Electrochemical cells based on alkali metal anodes are receiving intensive scientific interest as potentially transformative technology platforms for electrical energy storage. Chemical, morphological, mechanical and hydrodynamic instabilities at the metal anode produce uneven metal electrodeposition and poor anode reversibility, which, are among the many known challenges that limit progress. Here, we report that solid-state electrolytes based on crosslinked polymer networks can address all of these challenges in cells based on lithium metal anodes. By means of transport and electrochemical analyses, we show that manipulating thermodynamic interactions between polymer segments covalently anchored in the network and "free" segments belonging to an oligomeric electrolyte hosted in the network pores, one can facilely create hybrid electrolytes that simultaneously exhibit liquid-like barriers to ion transport and solid-like resistance to morphological and hydrodynamic instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...