Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956205

RESUMO

Acquired resistance to PARP inhibitors (PARPi) remains a treatment challenge for BRCA1/2-mutant breast cancer that drastically shortens patient survival. Although several resistance mechanisms have been identified, none have been successfully targeted in the clinic. Using new PARPi-resistance models of Brca1- and Bard1-mutant breast cancer generated in-vivo, we identified FLT1 (VEGFR1) as a driver of resistance. Unlike the known role of VEGF signaling in angiogenesis, we demonstrate a novel, non-canonical role for FLT1 signaling that protects cancer cells from PARPi in-vivo through a combination of cell-intrinsic and cell-extrinsic pathways. We demonstrate that FLT1 blockade suppresses AKT activation, increases tumor infiltration of CD8+ T cells, and causes dramatic regression of PARPi-resistant breast tumors in a T-cell-dependent manner. Moreover, PARPi-resistant tumor cells can be readily re-sensitized to PARPi by targeting Flt1 either genetically (Flt1-suppression) or pharmacologically (axitinib). Importantly, a retrospective series of breast cancer patients treated with PARPi demonstrated shorter progression-free survival in cases with FLT1 activation at pre-treatment. Our study therefore identifies FLT1 as a potential therapeutic target in PARPi-resistant, BRCA1/2-mutant breast cancer.

2.
Beilstein J Org Chem ; 19: 956-981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404800

RESUMO

The aza-Friedel-Crafts reaction allows an efficient coupling of electron-rich aromatic systems with imines for the facile incorporation of aminoalkyl groups into the aromatic ring. This reaction has a great scope of forming aza-stereocenters which can be tuned by different asymmetric catalysts. This review assembles recent advances in asymmetric aza-Friedel-Crafts reactions mediated by organocatalysts. The mechanistic interpretation with the origin of stereoselectivity is also explained.

3.
Nat Commun ; 13(1): 6095, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241629

RESUMO

We previously identified a chemotherapy-induced paracrine inflammatory loop that paradoxically mitigates the anti-tumor effect of chemotherapy and triggers metastatic propagation in breast and lung cancer models. Therefore, we sought to further validate and translate these findings into patient care by coupling the anti-TNF-α drug certolizumab pegol with standard cisplatin doublet chemotherapy. Here we first validate the anti-metastatic effect of certolizumab in a liver-metastatic Lewis Lung Carcinoma model. We then evaluate the safety, efficacy, and pharmacodynamic effects of certolizumab with cisplatin and pemetrexed in an open label Phase 1 clinical trial (NCT02120807) of eighteen adult patients with stage IV lung adenocarcinomas. The primary outcome is maximum tolerated dose. Secondary outcomes are response rate and progression-free survival (PFS); pharmacodynamic changes in blood and tumor are evaluated as a correlative outcome. There were nine partial responses among 16 patients evaluable (56%, 95% CI 30 to 80%). The median duration of response was 9.0 months (range 5.9 to 42.6 months) and median PFS was 7.1 months (95% CI 6.3 to NR). The standard 400 mg dose of certolizumab, added to cisplatin and pemetrexed, is well-tolerated and, as a correlative endpoint, demonstrates potent pharmacodynamic inhibition of peripheral cytokines associated with the paracrine inflammatory loop.


Assuntos
Adenocarcinoma de Pulmão , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pulmonares , Adulto , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Certolizumab Pegol/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pemetrexede/uso terapêutico , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/uso terapêutico
4.
Cancer Discov ; 12(4): 1002-1021, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078784

RESUMO

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in patients with EGFR-mutant lung cancer, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study, therefore, identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse. SIGNIFICANCE: Treatment with the EGFR TKI osimertinib prolongs the survival of patients with EGFR-mutant lung cancer; however, patients develop metastatic relapses, often to the brain. We identified a novel intracellular S100A9-ALDH1A1-RA signaling pathway that drives lethal brain relapse and can be targeted by pan-RAR antagonists to prevent cancer progression and prolong patient survival. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Família Aldeído Desidrogenase 1 , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Encéfalo/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Retinal Desidrogenase/genética , Transdução de Sinais , Tretinoína/farmacologia
5.
Cell Cycle ; 19(18): 2260-2269, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787501

RESUMO

The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.


Assuntos
Dano ao DNA , Reparo do DNA , Fator de Transcrição E2F1/metabolismo , Proteína do Retinoblastoma/metabolismo , Acetilação , Animais , Montagem e Desmontagem da Cromatina , Fator de Transcrição E2F1/genética , Histonas/metabolismo , Humanos , Proteína do Retinoblastoma/genética , Fatores de Transcrição de p300-CBP/metabolismo
6.
Cancer Med ; 9(18): 6766-6775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32730698

RESUMO

Nearly 80% of advanced cancer patients are afflicted with cachexia, a debilitating syndrome characterized by extensive loss of muscle mass and function. Cachectic cancer patients have a reduced tolerance to antineoplastic therapies and often succumb to premature death from the wasting of respiratory and cardiac muscles. Since there are no available treatments for cachexia, it is imperative to understand the mechanisms that drive cachexia in order to devise effective strategies to treat it. Although 25% of metastatic breast cancer patients develop symptoms of muscle wasting, mechanistic studies of breast cancer cachexia have been hampered by a lack of experimental models. Using tumor cells deficient for BARD1, a subunit of the BRCA1/BARD1 tumor suppressor complex, we have developed a new orthotopic model of triple-negative breast cancer that spontaneously metastasizes to the lung and leads to systemic muscle deterioration. We show that expression of the metal-ion transporter, Zip14, is markedly upregulated in cachectic muscles from these mice and is associated with elevated intramuscular zinc and iron levels. Aberrant Zip14 expression and altered metal-ion homeostasis could therefore represent an underlying mechanism of cachexia development in human patients with triple-negative breast cancer. Our study provides a unique model for studying breast cancer cachexia and identifies a potential therapeutic target for its treatment.


Assuntos
Caquexia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Neoplasias Pulmonares/metabolismo , Músculo Esquelético/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Proteína BRCA1/metabolismo , Caquexia/genética , Caquexia/patologia , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Músculo Esquelético/patologia , Norisoprenoides/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Zinco/metabolismo
7.
Nat Rev Cancer ; 20(5): 274-284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32235902

RESUMO

Tumours reprogram host physiology, metabolism and immune responses during cancer progression. The release of soluble factors, exosomes and metabolites from tumours leads to systemic changes in distant organs, where cancer cells metastasize and grow. These tumour-derived circulating factors also profoundly impact tissues that are rarely inhabited by metastatic cancer cells such as skeletal muscle and adipose tissue. In fact, the majority of patients with metastatic cancer develop a debilitating muscle-wasting syndrome, known as cachexia, that is associated with decreased tolerance to antineoplastic therapy, poor prognosis and accelerated death, with no approved treatments. In this Perspective, we discuss the development of cachexia in the context of metastatic progression. We briefly discuss how circulating factors either directly or indirectly promote cachexia development and examine how signals from the metastatic process can trigger and amplify this process. Finally, we highlight promising therapeutic opportunities for targeting cachexia in the context of metastatic cancers.


Assuntos
Caquexia/etiologia , Neoplasias/complicações , Animais , Caquexia/patologia , Progressão da Doença , Humanos , Metástase Neoplásica , Neoplasias/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31615873

RESUMO

Metastasis arises when cancer cells disseminate from their site of origin and invade distant organs. While cancer cells rarely colonize muscle, they often induce a debilitating muscle-wasting condition known as cachexia that compromises feeding, breathing, and cardiac function in metastatic cancer patients. In fact, nearly 80% of metastatic cancer patients experience a spectrum of muscle-wasting states, which deteriorates the quality of life and overall survival of cancer patients. Muscle wasting in cancer results from increased muscle catabolism induced by circulating tumor factors and a systemic metabolic dysfunction. In addition, muscle loss can be exacerbated by the exposure to antineoplastic therapies and the process of aging. With no approved therapies to alleviate cachexia, muscle health, therefore, becomes a key determinant of prognosis, treatment response, and survival in metastatic cancer patients. This review will discuss the current understanding of cancer-associated cachexia and highlight promising therapeutic strategies to treat muscle wasting in the context of metastatic cancers.


Assuntos
Caquexia/fisiopatologia , Atrofia Muscular/fisiopatologia , Metástase Neoplásica/patologia , Envelhecimento , Antineoplásicos/efeitos adversos , Caquexia/etiologia , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Metástase Neoplásica/tratamento farmacológico , Qualidade de Vida
9.
Cancers (Basel) ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861290

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer type in which the mortality rate approaches the incidence rate. More than 85% of PDAC patients experience a profound loss of muscle mass and function, known as cachexia. PDAC patients with this condition suffer from decreased tolerance to anti-cancer therapies and often succumb to premature death due to respiratory and cardiac muscle wasting. Yet, there are no approved therapies available to alleviate cachexia. We previously found that upregulation of the metal ion transporter, Zip14, and altered zinc homeostasis are critical mediators of cachexia in metastatic colon, lung, and breast cancer models. Here, we show that a similar mechanism is likely driving the development of cachexia in PDAC. In two independent experimental metastasis models generated from the murine PDAC cell lines, Pan02 and FC1242, we observed aberrant Zip14 expression and increased zinc ion levels in cachectic muscles. Moreover, in advanced PDAC patients, high levels of ZIP14 in muscles correlated with the presence of cachexia. These studies underscore the importance of altered ZIP14 function in PDAC-associated cachexia development and highlight a potential therapeutic opportunity for improving the quality of life and prolonging survival in PDAC patients.

10.
Nat Commun ; 10(1): 4951, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666529

RESUMO

E2F1 and retinoblastoma (RB) tumor-suppressor protein not only regulate the periodic expression of genes important for cell proliferation, but also localize to DNA double-strand breaks (DSBs) to promote repair. E2F1 is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here we demonstrate that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases and that this interaction is required for the recruitment of p300 and CBP to DSBs and the induction of histone acetylation at sites of damage. A knock-in mutation that blocks E2F1 acetylation abolishes the recruitment of p300 and CBP to DSBs and also the accumulation of other chromatin modifying activities and repair factors, including Tip60, BRG1 and NBS1, and renders mice hypersensitive to ionizing radiation (IR). These findings reveal an important role for E2F1 acetylation in orchestrating the remodeling of chromatin structure at DSBs to facilitate repair.


Assuntos
Proteína de Ligação a CREB/metabolismo , Quebras de DNA de Cadeia Dupla , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição E2F1/metabolismo , Histonas/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Técnicas de Introdução de Genes , Histona Acetiltransferases , Lisina Acetiltransferase 5/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Radiação Ionizante , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
11.
Nat Med ; 24(6): 770-781, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875463

RESUMO

Patients with metastatic cancer experience a severe loss of skeletal muscle mass and function known as cachexia. Cachexia is associated with poor prognosis and accelerated death in patients with cancer, yet its underlying mechanisms remain poorly understood. Here, we identify the metal-ion transporter ZRT- and IRT-like protein 14 (ZIP14) as a critical mediator of cancer-induced cachexia. ZIP14 is upregulated in cachectic muscles of mice and in patients with metastatic cancer and can be induced by TNF-α and TGF-ß cytokines. Strikingly, germline ablation or muscle-specific depletion of Zip14 markedly reduces muscle atrophy in metastatic cancer models. We find that ZIP14-mediated zinc uptake in muscle progenitor cells represses the expression of MyoD and Mef2c and blocks muscle-cell differentiation. Importantly, ZIP14-mediated zinc accumulation in differentiated muscle cells induces myosin heavy chain loss. These results highlight a previously unrecognized role for altered zinc homeostasis in metastatic cancer-induced muscle wasting and implicate ZIP14 as a therapeutic target for its treatment.


Assuntos
Caquexia/metabolismo , Caquexia/patologia , Proteínas de Transporte de Cátions/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Regulação para Cima , Animais , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina/metabolismo , Metástase Neoplásica , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Zinco/metabolismo
12.
Dalton Trans ; 46(33): 10963-10985, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28766668

RESUMO

Refluxing [VIVO(ß-diketonate)2], namely [VIVO(acetylacetonate)2] and [VIVO(benzoylacetonate)2], separately with an equivalent or excess amount of 2-aminobenzoylhydrazide (ah) in laboratory grade (LG) CH3OH in aerobic conditions afforded non-oxidovanadium(iv) and oxidovanadium(v) complexes of the type [VIV(L1)2] (1), [VVO(L1)(OCH3)]2 (3) and [VIV(L2)2] (2), and [VVO(L2)(OCH3)] (4), respectively. (L1)2- and (L2)2- represent the dianionic forms of 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2), respectively, (general abbreviation, H2L), which was formed by the in situ condensation of ah with the respective coordinated [ß-diketonate] in medium-to-good yield. The yield of different resulting products was dependent upon the ratio of ah to [VIVO(ß-diketonate)2]. For example, the yield of 1 and 2 complexes increased significantly associated with a decrease in the amount of 3 and 4 with an increase in the molar ratio of ah. Upon replacing CH3OH by a non-hydroxylic solvent, LG CHCl3, the above reaction yielded only oxidovanadium(v) complexes of the type [VVO(L1)(OH)]2 (5), [VVO(L2)(OH)] (6) and [VO3(L)2] (7, 8) whereas, upon replacing CHCl3 by another non-hydroxylic solvent, namely LG CH3CN, only the respective [VO3(L)2] (7, 8) complex was isolated in 72-78% yield. However, upon performing the above reactions in the absence of air using dry CH3OH or dry CHCl3, only the respective [VIV(L)2] complex was obtained, suggesting that aerial oxygen was the oxidising agent and the type of pentavalent product formed was dependent upon the nature of solvent used. Complexes 3 and 4 were converted, respectively, to 7 and 8 on refluxing in LG CHCl3via the respective unstable complex 5 and 6. The DFT calculated change in internal energy (ΔE) for the reactions 2[VVO(L2)(OCH3)] + 2H2O → 2[VVO(L2)(OH)] + 2CH3OH and 2[VVO(L2)(OH)] → [VO3(L2)2] + H2O was, respectively, +3.61 and -7.42 kcal mol-1, suggesting that the [VVO(L2)(OH)] species was unstable and readily transformed to the stable [VO3(L2)2] complex. Upon one-electron reduction at an appropriate potential, each of 7 and 8 generated mixed-valence [(L)VVO-(µ-O)-OVIV(L)]- species, which showed valence-delocalisation at room temperature and localisation at 77 K. Some of the complexes showed a wide range of toxicity in a dose-dependent manner against lung cancer cells comparable with that observed with cis-platin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrazinas/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Solventes/química , Vanádio/química , Aerobiose , Anaerobiose , Linhagem Celular Tumoral , Humanos
13.
Genes Dev ; 30(22): 2500-2512, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940962

RESUMO

The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome instability. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. We uncovered a novel, nontranscriptional function for RB in HR, which could contribute to genome instability associated with RB loss.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Recombinação Homóloga/genética , Proteínas Nucleares/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Helicases/genética , Reparo do DNA/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Raios gama , Técnicas de Introdução de Genes , Instabilidade Genômica/genética , Humanos , Masculino , Camundongos , Mutagênicos/farmacologia , Mutação , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transporte Proteico/genética , Proteína do Retinoblastoma/genética , Fatores de Transcrição/genética , Irradiação Corporal Total/mortalidade
14.
Sci Rep ; 5: 8294, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25656598

RESUMO

Cu(0) nanoparticles were deposited on a nanoporous polymer to develop a novel nanocatalyst (Cu-B) for carrying out Ullmann coupling of aryl halides with amines in water. Non-aqueous polymerization of a mixture of divinylbenzene and acrylic acid under hydrothermal conditions followed by the deposition of Cu(0) nanoparticles were adopted to afford the Cu-B nanocatalyst. In order to compare the catalytic activity of the Cu-B nanocatalyst in the Ullmann coupling reactions, another nanocatalyst, Cu(0) nanoparticle-loaded porous carbon (Cu-A), was also prepared. All the newly developed Cu(0) nanoparticle-based nanocatalysts were thoroughly characterized using several characterization techniques. The Ullmann coupling reactions were carried out in water only with 1.35 mol% loading of Cu as catalytically active sites in Cu-B. The Cu-B nanocatalyst exhibited higher catalytic activity as compared with Cu-A, and also showed a good catalytic recyclability with a high consistence in the catalytic activity. No Cu leaching from the nanocatalyst surface and the smooth nanocatalyst recovery confirm the true heterogeneity in these catalytic reactions.

15.
Chem Sci ; 6(2): 1252-1257, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541440

RESUMO

Stereoselective synthesis of pyrazolidinones via dipolar cycloaddition of azomethine imines with active esters under Lewis base catalysis is presented. The active esters are readily generated in situ from the corresponding acids. Products, which are obtained with excellent diastereocontrol and high enantioselectivity, contain along with the pyrazolidinone core also the tetrahydroisoquinoline structural motif. Theoretical studies give insight into the mechanism of the formal cycloaddition reaction.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24701245

RESUMO

Plants have served as sources of food and medicines for human beings since their advent. During famines or conditions of food scarcity, people throughout the world depend on unconventional plant items to satiate their hunger and meet their nutritional needs. Malnourished people often suffer from various diseases, much more than people eating a balanced diet. We are hypothesizing that the unconventional food plants that people eat during times of scarcity of their normal diet are also medicinal plants and thus can play a role in satiating hunger, meeting nutritional needs, and serving therapeutic purposes. Towards testing our hypothesis, surveys were carried out among the low income people of four villages in Lalmonirhat and Nilphamari districts of Bangladesh. People and particularly the low income people of these two districts suffer each year from a seasonal famine known as Monga. Over 200 informants from 167 households in the villages were interviewed with the help of a semistructured questionnaire and the guided field-walk method. The informants mentioned a total of 34 plant species that they consumed during Monga. Published literature shows that all the species consumed had ethnomedicinal uses. It is concluded that famine food plants also serve as ethnomedicinal plants.

17.
J Am Chem Soc ; 136(16): 6011-20, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24730391

RESUMO

A method for synthesis of 3-azabicyclo[3.1.0]hex-2-enes has been developed by intramolecular cyclopropanation of readily available N-allyl enamine carboxylates. Two complementary reaction conditions, CuBr-mediated aerobic and CuBr2-catalyzed-PhIO2-mediated systems effectively induced stepwise cyclopropanation via carbocupration of alkenes. Oxidative cyclopropane ring-opening of 5-substituted 3-azabicyclo[3.1.0]hex-2-enes was also developed for synthesis of highly substituted pyridines. In addition, diastereoselective reduction of 3-azabicyclo[3.1.0]hex-2-enes to 3-azabicyclo[3.1.0]hexanes was achieved using NaBH3CN in the presence of acetic acid.


Assuntos
Alcenos/química , Ácidos Carboxílicos/química , Cobre/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Aminas/química , Catálise , Técnicas de Química Sintética , Oxirredução , Piridinas/química , Estereoisomerismo , Especificidade por Substrato
18.
Cancer Res ; 74(12): 3369-77, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24741006

RESUMO

In response to DNA damage, the E2F1 transcription factor is phosphorylated at serine 31 (serine 29 in mouse) by the ATM or ATR kinases, which promotes E2F1 protein stabilization. Phosphorylation of E2F1 also leads to the recruitment of E2F1 to sites of DNA damage, where it functions to enhance DNA repair. To study the role of this E2F1 phosphorylation event in vivo, a knock-in mouse model was generated, in which serine 29 was mutated to alanine. The S29A mutation impairs E2F1 stabilization in response to ultraviolet (UV) radiation and doxorubicin treatment, but has little effect on the expression of E2F target genes. The apoptotic and proliferative responses to acute UV radiation exposure are also similar between wild-type and E2f1(S29A/) (S29A) mice. As expected, the S29A mutation prevents E2F1 association with damaged DNA and reduces DNA repair efficiency. Moreover, E2f1(S29A/) (S29A) mice display increased sensitivity to UV-induced skin carcinogenesis. This knock-in mouse model thus links the ability of E2F1 to directly promote DNA repair with the suppression of tumor development.


Assuntos
Carcinogênese/genética , Reparo do DNA , Fator de Transcrição E2F1/fisiologia , Neoplasias Cutâneas/genética , Raios Ultravioleta , Substituição de Aminoácidos , Animais , Células Cultivadas , Dano ao DNA , Técnicas de Introdução de Genes , Genes Supressores de Tumor , Camundongos , Camundongos Transgênicos , Fosforilação , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transporte Proteico
19.
Chemistry ; 19(15): 4664-78, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23436489

RESUMO

This Concept article discusses the potential of oxidative carbene catalysis in synthesis and comprehensively covers pioneering studies as well as recent developments. Oxidative carbene catalysis can be conducted by using inorganic and organic oxidants. Applications in cascade processes, in enantioselective catalysis, and also in natural product synthesis are discussed.

20.
Chem Commun (Camb) ; 48(42): 5190-2, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22513712

RESUMO

Carbene catalysed redox activation of α,ß-unsaturated aldehydes is applied for generation of α,ß-unsaturated acyl azoliums which undergo cyclopropanation upon reaction with a sulfur ylide and an alcohol to give the corresponding cyclopropanecarboxylic acid esters. With chiral carbenes good to excellent diastereo and enantioselectivities are obtained.


Assuntos
Aldeídos/química , Ciclopropanos/química , Metano/análogos & derivados , Catálise , Metano/química , Oxirredução , Estereoisomerismo , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...