Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 162-175.e14, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328911

RESUMO

Long-term epigenetic reprogramming of innate immune cells in response to microbes, also termed "trained immunity," causes prolonged altered cellular functionality to protect from secondary infections. Here, we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undetectable in serum soon after mice were shifted back to a chow diet (CD). In contrast, myeloid cell responses toward innate stimuli remained broadly augmented. WD-induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells led to increased proliferation and enhanced innate immune responses. Quantitative trait locus (QTL) analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with lipopolysaccharide (LPS) suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/- mice lacked WD-induced systemic inflammation, myeloid progenitor proliferation, and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby mediate the potentially deleterious effects of trained immunity in inflammatory diseases.


Assuntos
Reprogramação Celular , Dieta Ocidental , Epigênese Genética , Imunidade Inata , Memória Imunológica , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Locos de Características Quantitativas , Receptores de LDL/genética
2.
FASEB J ; 31(5): 2013-2025, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28183804

RESUMO

Intestinal inflammation is associated with low levels of mucosal ATP, highlighting the importance of mitochondrial function associated with ATP production in the pathophysiology of the disease. In the inflamed colon of humans and mice, we found decreased levels of mitochondrial complex cytochrome c oxidase I/IV and lower ATP levels. Thus, we generated colonic ρ0 cells with reduced mitochondrial function linked to ATP production by selective depletion of mitochondrial DNA. In these cells, RNA sequencing revealed a substantial number of differentially expressed transcripts, among which 240 belonged to inflammatory pathways activated in human inflamed colon and TNF-α-treated cells (false discovery rate < 0.05). TNF-α treatment of colonic ρ0 cells augmented IL-8 expression by 9-fold (P < 0.01) via NF-κB compared to TNF-α-treated control. Moreover, reduced mitochondrial function facilitated TNF-α-mediated NF-κB luciferase promoter activity as a result of lowered inhibitory IκBα (nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor, α), leading to elevated NF-κB. In cells with reduced mitochondrial function, TNF-α facilitated AMPKα2 activation by 8-fold (P < 0.01), which was involved in NF-κB-dependent IL-8 expression. Last, in human and mouse colon, anti-TNF-α treatment restored reduced mitochondria-dependent inflammation. We propose that selective targeting of this novel mechanism provides new treatment opportunities for intestinal inflammation.-Heller, S., Penrose, H. M., Cable, C., Biswas, D., Nakhoul, H., Baddoo, M., Flemington, E., Crawford, S. E., Savkovic, S. D. Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos B/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Animais , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
Am J Physiol Gastrointest Liver Physiol ; 310(10): G844-54, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968210

RESUMO

Intestinal inflammation has been recently characterized by the dysregulation of lipids as metabolic and energy sources, revealing a novel feature of its pathophysiology. Because intracellular lipids, stored in dynamic lipid droplets (LDs), provide energy for cellular needs, we investigated whether they play a role in intestinal inflammation. In the inflamed intestine of mice, elevated LDs were found in colonic and infiltrating immune cells as shown by staining for the LD coat protein PLIN2 and for lipids with BODIPY. In colonic cells, TNF stimulated LD increases by receptor signaling rely on phosphatidylinositol 3-kinase activation. Downstream, TNF triggered a negative regulatory loop between LDs and the transcription factor FOXO3. This was shown in the colon of Foxo3-deficient mice, where elevation in PLIN2 and lipids were further facilitated by inflammation and were more prominent relative to wild-type, whereas, in colonic cells, inhibition of lipogenesis blocked the TNF-mediated loss of FOXO3. Furthermore, blockade of PGE2 synthesis abrogated TNF-stimulated increases in LDs and FOXO3 inactivation. We found in colonic tissue of Foxo3-deficient mice higher levels of cyclooxygenase-2, a mediator of prostaglandin E2 (PGE2) synthesis, supporting involvement of PGE2 in the LD-FOXO3 regulatory loop. Ultimately, TNF-stimulated lipogenesis leading to elevated LDs facilitated NF-κB-mediated increases in IL-8 protein, which is associated with the surface of LDs found in the lumina of the endoplasmic reticulum and Golgi apparatus. This novel immunometabolic mechanism of colonic inflammation involving elevated LDs could provide opportunities for new treatment options.


Assuntos
Dinoprostona/metabolismo , Proteína Forkhead Box O3/metabolismo , Mucosa Intestinal/metabolismo , Gotículas Lipídicas/metabolismo , Lipogênese , Animais , Retículo Endoplasmático/metabolismo , Proteína Forkhead Box O3/genética , Complexo de Golgi/metabolismo , Células HCT116 , Células HT29 , Humanos , Inflamação/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Perilipina-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...