Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24165, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293496

RESUMO

Carrot is a seasonal perishable tuberous root vegetable which presents a preservation challenge owing to its elevated moisture content. Recently, carrot processing has received more attention because of its many health-promoting qualities and the reduction of postharvest losses in a cost-effective safe way. This study was designed to sort out the effective solar drying technique including pre-treatment that would retain the color and quality characteristics of dehydrated carrot. Carrot slices were subjected to dry using open sun drying (D1), solar drying long chimney (D2), solar drying short chimney (D3) and box solar drying (D4) techniques with the pretreatments of ascorbic acid 1 % (C3), citric acid 5 % (C4), potassium metabisulfite 1 % (C5) and potassium sodium tartrate 0.3 % (C6) before drying. Drying characteristics, nutritional attributes, phytochemicals and antioxidant of the dehydrated carrot samples were compared with the fresh sample and untreated (control) sample. Results showed that D4 was a good drying method to preserve nutritional quality with good appearance. Among the pretreatments, C5 and C4 resulted improved nutritional quality retention, enhanced visual acceptability and enriched antioxidant activities. PCA (Principal Component Analysis) and correlation matrix revealed that D4 with C5 retained the maximum amount of vitamin, minerals, total phenolic content, antioxidant and admirable dehydrated carrot color by inactivating enzymatic reaction. Therefore, box solar drying with potassium metabisulfite pretreatment would be very promising for functional carrot drying retaining acceptable color and nutrition composition.

2.
J Agric Food Chem ; 70(36): 11169-11178, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054836

RESUMO

Reactive oxygen species (ROS) are critical factors that cause damage in salt-stressed plants, but their mechanisms of action in living cells are largely unknown. We investigated the roles of reactive carbonyl species (RCS), i.e., the lipid peroxide-derived α,ß-unsaturated aldehydes and ketones, in plant growth retardation under salt stress. When Arabidopsis thaliana Col-0 seeds were exposed to 100 mM NaCl, germination was delayed and the levels of ROS, RCS, and protein carbonylation in the seedlings were increased. Adding the histidine-containing dipeptides carnosine, N-acetylcarnosine, and anserine, which are reported RCS scavengers, restored the germination speed and suppressed the increases in RCS and protein carbonylation but did not affect the ROS level. Increases in the levels of the RCS acrolein, crotonaldehyde, (E)-2-pentenal, and 4-hydroxy-(E)-2-nonenal were positively correlated with the delay of germination and growth inhibition. These RCS, generated downstream of ROS, are thus primarily responsible for the salt-stress symptoms of plants.


Assuntos
Arabidopsis , Histidina , Arabidopsis/metabolismo , Dipeptídeos/metabolismo , Histidina/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino
3.
Methods Mol Biol ; 2526: 201-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657522

RESUMO

Responses of plant cells to reactive oxygen species (ROS), e.g., reprogramming of defense genes or progression of cell death, should include the ROS signal transmission to target proteins, but the biochemistry of this process is largely unknown. Lipid peroxide-derived α,ß-unsaturated aldehydes and ketones (reactive carbonyl species; RCS), downstream products of ROS stimuli, are recently emerging endogenous agents that can mediate ROS signal to proteins via covalent modification. The involvement of RCS in certain ROS signaling in plants (oxidative injury of leaves and roots, ROS-induced programmed cell death, senescence, and abscisic acid and auxin signaling) has been verified by the determination of RCS with the use of conventional HPLC. Because distinct kinds of RCS act differently in the cell and so are metabolized, identification and quantification of each RCS in plant tissues provide central information to decipher biochemical mechanisms of plant responses to ROS. This article illustrates practical methods of plant sample preparation and extraction and analysis of RCS.


Assuntos
Arabidopsis , Células Vegetais , Ácido Abscísico/metabolismo , Arabidopsis/genética , Estresse Oxidativo , Células Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 12(1): 5599, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379908

RESUMO

Biofilm-producing rhizobacteria (BPR) enhance productivity and mitigate abiotic stresses in plants. This study showed that 21 out of 65 halotolerant rhizobacteria could build biofilms. The components of the biofilm matrices i.e., extracellular polymeric substances (EPS) are proteins, curli, nanocelloluse, nucleic acids, lipids, and peptidoglycans. Various functional groups including carbonyl, carboxyl, amino, hydroxyl, and phosphate were identified. Positions of these groups were shifted by application of 5% NaCl, suggesting Na+ biosorption. By sequencing, Glutamicibacter arilaitensis (ESK1, ESM4 and ESM7), G. nicotianae (ESK19, ESM8 and ESM16), Enterobacter ludwigii (ESK15, ESK17, ESM2 and ESM17), E. cloacae (ESM5 and ESM12), Exiguobacterium acetylicum (ESM24 and ESM25), Staphylococcus saprophyticus ESK6, Leclercia adecarboxylata ESK12, Pseudomonas poae ESK16, Bacillus subtilis ESM14, and P. putida ESM17 were identified. These rhizobacteria exhibited numerous plant growth-promoting (PGP) activities including producing IAA, ACC deaminase, and siderophores, and solubilizing phosphate. Under non-stress, bacterized plants increased biomass accumulation (8-23.2% roots and 23-49.4% shoots), while under seawater-induced salt stress only ESK12, ESM4, ESM12, and ESM14 enhanced biomass production (5.8-52.9% roots and 8.8-33.4% shoots). Bacterized plants induced antioxidant defense system (19.5-142% catalase and 12.3-24.2% DPPH radical scavenging activity), retained a greater relative water content (17-124%), showed lesser membrane injuries (19.9-26.5%), and a reduced Na+ (6-24% in roots) and increased K+/Na+ ratio (78.8 and 103% in roots by ESK12 and ESM24, respectively) than the non-bacterized plants in saline conditions. Thus, native halotolerant BPR can be utilized as ameliorators of salt stress.


Assuntos
Alphaproteobacteria , Solanum lycopersicum , Biofilmes , Solanum lycopersicum/microbiologia , Estresse Salino , Água do Mar
5.
Front Plant Sci ; 12: 720867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777410

RESUMO

Oxidation of membrane lipids by reactive oxygen species (ROS) or O2/lipoxygenase leads to the formation of various bioactive compounds collectively called oxylipins. Reactive carbonyl species (RCS) are a group of oxylipins that have the α,ß-unsaturated carbonyl structure, including acrolein and 4-hydroxy-(E)-2-nonenal. RCS provides a missing link between ROS stimuli and cellular responses in plants via their electrophilic modification of proteins. The physiological significance of RCS in plants has been established based on the observations that the RCS-scavenging enzymes that are overexpressed in plants or the RCS-scavenging chemicals added to plants suppress the plants' responses to ROS, i.e., photoinhibition, aluminum-induced root damage, programmed cell death (PCD), senescence, abscisic acid-induced stomata closure, and auxin-induced lateral root formation. The functions of RCS are thus a key to ROS- and redox-signaling in plants. The chemical species involved in distinct RCS signaling/damaging phenomena were recently revealed, based on comprehensive carbonyl determinations. This review presents an overview of the current status of research regarding RCS signaling functions in plants and discusses present challenges for gaining a more complete understanding of the signaling mechanisms.

6.
PeerJ ; 9: e12419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824915

RESUMO

Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort's model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.

7.
Plant J ; 108(5): 1439-1455, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34587326

RESUMO

The Arabidopsis thaliana aldehyde oxidase 3 (AAO3) catalyzes the oxidation of abscisic aldehyde (ABal) to abscisic acid (ABA). Besides ABal, plants generate other aldehydes that can be toxic above a certain threshold. AAO3 knockout mutants (aao3) exhibited earlier senescence but equivalent relative water content compared with wild-type (WT) during normal growth or upon application of UV-C irradiation. Aldehyde profiling in leaves of 24-day-old plants revealed higher accumulation of acrolein, crotonaldehyde, 3Z-hexenal, hexanal and acetaldehyde in aao3 mutants compared with WT leaves. Similarly, higher levels of acrolein, benzaldehyde, crotonaldehyde, propionaldehyde, trans-2-hexenal and acetaldehyde were accumulated in aao3 mutants upon UV-C irradiation. Aldehydes application to plants hastened profuse senescence symptoms and higher accumulation of aldehydes, such as acrolein, benzaldehyde and 4-hydroxy-2-nonenal, in aao3 mutant leaves as compared with WT. The senescence symptoms included greater decrease in chlorophyll content and increase in transcript expression of the early senescence marker genes, Senescence-Related-Gene1, Stay-Green-Protein2 as well as NAC-LIKE, ACTIVATED-BY AP3/P1. Notably, although aao3 had lower ABA content than WT, members of the ABA-responding genes SnRKs were expressed at similar levels in aao3 and WT. Moreover, the other ABA-deficient mutants [aba2 and 9-cis-poxycarotenoid dioxygenase3-2 (nced3-2), that has functional AAO3] exhibited similar aldehydes accumulation and chlorophyll content like WT under normal growth conditions or UV-C irradiation. These results indicate that the absence of AAO3 oxidation activity and not the lower ABA and its associated function is responsible for the earlier senescence symptoms in aao3 mutant.


Assuntos
Ácido Abscísico/metabolismo , Aldeído Oxidase/metabolismo , Aldeídos/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Aldeído Oxidase/genética , Aldeídos/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/fisiologia , Senescência Vegetal
8.
Front Microbiol ; 11: 542053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324354

RESUMO

Plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth but also control phytopathogens and mitigate abiotic stresses, including water-deficit stress. In this study, 21 (26.9%) rhizobacterial strains isolated from drought-prone ecosystems of Bangladesh were able to form air-liquid (AL) biofilms in the glass test tubes containing salt-optimized broth plus glycerol (SOBG) medium. Based on 16S rRNA gene sequencing, Pseudomonas chlororaphis (ESR3 and ESR15), P. azotoformans ESR4, P. poae ESR6, P. fluorescens (ESR7 and ESR25), P. gessardii ESR9, P. cedrina (ESR12, ESR16, and ESR23), P. veronii (ESR13 and ESR21), P. parafulva ESB18, Stenotrophomonas maltophilia ESR20, Bacillus cereus (ESD3, ESD21, and ESB22), B. horikoshii ESD16, B. aryabhattai ESB6, B. megaterium ESB9, and Staphylococcus saprophyticus ESD8 were identified. Fourier transform infrared spectroscopy studies showed that the biofilm matrices contain proteins, polysaccharides, nucleic acids, and lipids. Congo red binding results indicated that these bacteria produced curli fimbriae and nanocellulose-rich polysaccharides. Expression of nanocellulose was also confirmed by Calcofluor binding assays and scanning electron microscopy. In vitro studies revealed that all these rhizobacterial strains expressed multiple plant growth-promoting traits including N2 fixation, production of indole-3-acetic acid, solubilization of nutrients (P, K, and Zn), and production of ammonia, siderophores, ACC deaminase, catalases, lipases, cellulases, and proteases. Several bacteria were also tolerant to multifarious stresses such as drought, high temperature, extreme pH, and salinity. Among these rhizobacteria, P. cedrina ESR12, P. chlororaphis ESR15, and B. cereus ESD3 impeded the growth of Xanthomonas campestris pv. campestris ATCC 33913, while P. chlororaphis ESR15 and B. cereus ESD21 prevented the progression of Ralstonia solanacearum ATCC® 11696TM. In a pot experiment, tomato plants inoculated with P. azotoformans ESR4, P. poae ESR6, P. gessardii ESR9, P. cedrina ESR12, P. chlororaphis ESR15, S. maltophilia ESR20, P. veronii ESR21, and B. aryabhattai ESB6 exhibited an increased plant growth compared to the non-inoculated plants under water deficit-stressed conditions. Accordingly, the bacterial-treated plants showed a higher antioxidant defense system and a fewer tissue damages than non-inoculated plants under water-limiting conditions. Therefore, biofilm-producing PGPR can be utilized as plant growth promoters, suppressors of plant pathogens, and alleviators of water-deficit stress.

9.
Plant Cell Physiol ; 61(10): 1788-1797, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810268

RESUMO

Production of reactive oxygen species (ROS) is a key signal event for methyl jasmonate (MeJA)- and abscisic acid (ABA)-induced stomatal closure. We recently showed that reactive carbonyl species (RCS) stimulates stomatal closure as an intermediate downstream of hydrogen peroxide (H2O2) production in the ABA signaling pathway in guard cells of Nicotiana tabacum and Arabidopsis thaliana. In this study, we examined whether RCS functions as an intermediate downstream of H2O2 production in MeJA signaling in guard cells using transgenic tobacco plants overexpressing A. thaliana 2-alkenal reductase (n-alkanal + NAD(P)+ ⇌ 2-alkenal + NAD(P)H + H+) (AER-OE tobacco) and Arabidopsis plants. The stomatal closure induced by MeJA was impaired in the AER-OE tobacco and was inhibited by RCS scavengers, carnosine and pyridoxamine, in the wild-type (WT) tobacco plants and Arabidopsis plants. Application of MeJA significantly induced the accumulation of RCS, including acrolein and 4-hydroxy-(E)-2-nonenal, in the WT tobacco but not in the AER-OE plants. Application of MeJA induced H2O2 production in the WT tobacco and the AER-OE plants and the H2O2 production was not inhibited by the RCS scavengers. These results suggest that RCS functions as an intermediate downstream of ROS production in MeJA signaling and in ABA signaling in guard cells.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Nicotiana/metabolismo , Nicotiana/fisiologia
11.
Antioxidants (Basel) ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041258

RESUMO

H2O2-induced programmed cell death (PCD) of tobacco Bright Yellow-2 (BY-2) cells is mediated by reactive carbonyl species (RCS), degradation products of lipid peroxides, which activate caspase-3-like protease (C3LP). Here, we investigated the mechanism of RCS accumulation in the H2O2-induced PCD of BY-2 cells. The following biochemical changes were observed in 10-min response to a lethal dose (1.0 mM) of H2O2, but they did not occur in a sublethal dose (0.5 mM) of H2O2. (1) The C3LP activity was increased twofold. (2) The intracellular levels of RCS, i.e., 4-hydroxy-(E)-hexenal and 4-hydroxy-(E)-nonenal (HNE), were increased 1.2-1.5-fold. (3) The activity of a reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent carbonyl reductase, scavenging HNE, and n-hexanal was decreased. Specifically, these are the earliest events leading to PCD. The proteasome inhibitor MG132 suppressed the H2O2-induced PCD, indicating that the C3LP activity of the 1 subunit of the 20S proteasome was responsible for PCD. The addition of H2O2 to cell-free protein extract inactivated the carbonyl reductase. Taken together, these results suggest a PCD-triggering mechanism in which H2O2 first inactivates a carbonyl reductase(s), allowing RCS levels to rise, and eventually leads to the activation of the C3LP activity of 20S proteasome. The carbonyl reductase thus acts as an ROS sensor for triggering PCD.

12.
Plants (Basel) ; 8(10)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575078

RESUMO

As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the ,-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article.

13.
Plant J ; 100(3): 536-548, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306517

RESUMO

In auxin-stimulated roots, production of reactive oxygen species (ROS) via the hormone-induced activation of respiratory burst oxidase homologous NADPH oxidases facilitates lateral root (LR) formation. In this study, in order to verify that ROS can modulate auxin signaling, we examined the involvement of the lipid peroxide-derived agents known as reactive carbonyl species (RCS) in LR formation. When auxin was added to Arabidopsis thaliana roots, the levels of RCS, for example acrolein, 4-hydroxynonenal and crotonaldehyde, were increased prior to LR formation. Addition of the carbonyl scavenger carnosine suppressed auxin-induced LR formation. Addition of RCS to the roots induced the expression of the auxin-responsive DR5 promoter and the TIR1, IAA14, ARF7, LBD16 and PUCHI genes and facilitated LR formation without increasing the endogenous auxin level. DR5 and LBD16 were activated in the LR primordia. The auxin signaling-deficient mutants arf7 arf19 and slr-1 did not respond - and tir1 afb2 appeared to show a poor response - to RCS. When given to the roots RCS promoted the disappearance of the AXR3NT-GUS fusion protein, i.e. the degradation of the auxin/indole-3-acetic acid protein, as did auxin. These results indicate that the auxin-induced production of ROS and their downstream products RCS modulate the auxin signaling pathway in a feed-forward manner. RCS are key agents that connect the ROS signaling and the auxin signaling pathways.


Assuntos
Arabidopsis/fisiologia , Radicais Livres/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Peróxidos Lipídicos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Plant Cell Physiol ; 60(5): 1146-1159, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796836

RESUMO

We have demonstrated that reactive carbonyl species (RCS) function as an intermediate downstream of hydrogen peroxide (H2O2) production in abscisic acid (ABA) signaling for stomatal closure in guard cells using transgenic tobacco plants overexpressing alkenal reductase. We investigated the conversion of the RCS production into downstream signaling events in the guard cells. Both ABA and H2O2 induced production of the RCS, such as acrolein and 4-hydroxy-(E)-2-nonenal (HNE), in epidermal tissues of wild-type Arabidopsis thaliana plants. Application of the RCS scavengers, carnosine and pyridoxamine, did not affect the ABA-induced H2O2 production but inhibited the ABA- and H2O2-induced stomatal closure. Both acrolein and HNE induced stomatal closure in a plasma membrane NAD(P)H oxidase mutant atrbohD atrbohF as well as in the wild type, but not in a calcium-dependent kinase mutant cpk6. Acrolein activated plasma membrane Ca2+-permeable cation channels, triggered cytosolic free Ca2+ concentration ([Ca2+]cyt) elevation, and induced stomatal closure accompanied by depletion of glutathione in the guard cells. These results suggest that RCS production is a signaling event between the ROS production and [Ca2+]cyt elevation during guard cell ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Fitocromo/metabolismo , Transdução de Sinais
15.
Methods Mol Biol ; 1743: 117-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332291

RESUMO

Oxidation of membrane lipids by reactive oxygen species primarily generates lipid peroxides, from which various carbonyls, i.e., aldehydes and ketones, are formed. Among them, those with a carbonyl-conjugated C-C double bond have significant biological functions and are designated as reactive carbonyl species (RCS). A dozen kinds of RCS occurring in plant cells have a broad spectrum of reactivity and biological effects, depending on the structure. Several RCS have been recently found to activate caspase-like proteases in plants, thereby initiating PCD. Comprehensive and quantitative RCS analysis method using conventional HPLC is illustrated.


Assuntos
Oxirredução , Estresse Oxidativo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrazinas/metabolismo , Fenômenos Fisiológicos Vegetais
16.
Planta ; 245(2): 255-264, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27718072

RESUMO

MAIN CONCLUSION: Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 µM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.


Assuntos
Acroleína/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Inativação Metabólica , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/isolamento & purificação , Homologia de Sequência de Aminoácidos
17.
Plant Cell Physiol ; 57(7): 1432-1442, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27106783

RESUMO

Reactive oxygen species (ROS)-triggered programmed cell death (PCD) is a typical plant response to biotic and abiotic stressors. We have recently shown that lipid peroxide-derived reactive carbonyl species (RCS), downstream products of ROS, mediate oxidative signal to initiate PCD. Here we investigated the mechanism by which RCS initiate PCD. Tobacco Bright Yellow-2 cultured cells were treated with acrolein, one of the most potent RCS. Acrolein at 0.2 mM caused PCD in 5 h (i.e. lethal), but at 0.1 mM it did not (sublethal). Specifically, these two doses caused critically different effects on the cells. Both lethal and sublethal doses of acrolein exhausted the cellular glutathione pool in 30 min, while the lethal dose only caused a significant ascorbate decrease and ROS increase in 1-2 h. Prior to such redox changes, we found that acrolein caused significant increases in the activities of caspase-1-like protease (C1LP) and caspase-3-like protease (C3LP), the proteases which trigger PCD. The lethal dose of acrolein increased the C3LP activity 2-fold more than did the sublethal dose. In contrast, C1LP activity increments caused by the two doses were not different. Acrolein and 4-hydroxy-(E)-2-nonenal, another RCS, activated both proteases in a cell-free extract from untreated cells. H2O2 at 1 mM added to the cells increased C1LP and C3LP activities and caused PCD, and the RCS scavenger carnosine suppressed their activation and PCD. However, H2O2 did not activate the proteases in a cell-free extract. Thus the activation of caspase-like proteases, particularly C3LP, by RCS is an initial biochemical event in oxidative signal-stimulated PCD in plants.


Assuntos
Apoptose , Caspase 3/metabolismo , Nicotiana/citologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acroleína/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Carnosina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glutationa/metabolismo , Peróxido de Hidrogênio/toxicidade , Espaço Intracelular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética
18.
Plant Physiol ; 168(3): 885-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025050

RESUMO

Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,ß-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed.


Assuntos
Apoptose/efeitos dos fármacos , Arabidopsis/citologia , Peróxido de Hidrogênio/farmacologia , Peróxidos Lipídicos/metabolismo , Nicotiana/citologia , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Carnosina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Hidralazina/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...