Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 979, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200011

RESUMO

This study aims to optimize the power generation of a conventional Manzanares solar chimney (SC) plant through strategic modifications to the collector inlet height, chimney diameter, and chimney divergence. Employing a finite volume-based solver for numerical analysis, we systematically scrutinize influential geometric parameters, including collector height (hi = 1.85 to 0.1 m), chimney inlet diameter (dch = 10.16 to 55.88 m), and chimney outlet diameter (do = 10.16 to 30.48 m). Our findings demonstrate that reducing the collector inlet height consistently leads to increased power output. The optimal collector inlet height of hi = 0.2 m results in a significant power increase from 51 to 117.42 kW (~ 2.3 times) without additional installation costs, accompanied by an efficiency of 0.25%. Conversely, enlarging the chimney diameter decreases the chimney base velocity and suction pressure. However, as turbine-driven power generation rises, the flow becomes stagnant beyond a chimney diameter of 45.72 m. At this point, power generation reaches 209 kW, nearly four times greater than the Manzanares plant, with an efficiency of 0.44%. Nevertheless, the cost of expanding the chimney diameter is substantial. Furthermore, the impact of chimney divergence is evident, with power generation, collector efficiency, overall efficiency, and collector inlet velocity all peaking at an outer chimney diameter of 15.24 m (corresponding to an area ratio of 2.25). At this configuration, power generation increases to 75.91 kW, approximately 1.5 times more than the initial design. Remarkably, at a low collector inlet height of 0.2 m, combining it with a chimney diameter of 4.5 times the chimney inlet diameter (4.5dch) results in an impressive power output of 635.02 kW, signifying a substantial 12.45-fold increase. To model the performance under these diverse conditions, an artificial neural network (ANN) is effectively utilized.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37950444

RESUMO

The mortality rates due to cardiovascular diseases are on a rise globally. One of the major cardiovascular diseases is stroke which occurs due to atherosclerotic plaques build-up in the carotid artery. The common carotid artery (CCA) bifurcates into the internal carotid artery (ICA) and external carotid artery (ECA). Sinus present at ICA is an ellipsoidal-shaped dilated region acting as a pressure receptor and blood flow regulator. Dimensions of the sinus vary from person to person, affecting the hemodynamics of the carotid artery. The current numerical study manifests a 3D flow analysis by varying the sinus length to investigate its local and global effects on the hemodynamics of the carotid artery using various biomechanical risk analysis parameters of atherosclerosis. User-defined function (UDF) dictates the pulsatile flow velocity profile imposed at the inlet. Near the outer wall (OW) of the sinus, the blood flow velocities are lower and recirculation zones are more. Though the recirculation zones for shorter sinus will be close to the inner wall (IW), interestingly, with an increase in the sinus length, the recirculation zones shift toward the OW with higher strength. These significantly decrease the x-wall shear stress (x-WSS) and time-averaged wall shear stress (TAWSS) values on the OW of the longer sinus. The other risk analysis parameters, like oscillatory shear index (OSI) and relative residence time (RRT), support the described consequences. These results reveal that sinus of increased length is more prone to developing atherosclerotic plaque.

3.
Micromachines (Basel) ; 14(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241695

RESUMO

The high demand for compact heat exchangers has led researchers to develop high-quality and energy-efficient heat exchangers at a lower cost than conventional ones. To address this requirement, the present study focuses on improvements to the tube/shell heat exchanger to maximize the efficiency either by altering the tube's geometrical shape and/or by adding nanoparticles in its heat transfer fluid. Water-based Al2O3-MWCNT hybrid nanofluid is utilized here as a heat transfer fluid. The fluid flows at a high temperature and constant velocity, and the tubes are maintained at a low temperature with various shapes of the tube. The involved transport equations are solved numerically by the finite-element-based computing tool. The results are presented using the streamlines, isotherms, entropy generation contours, and Nusselt number profiles for various nanoparticles volume fraction 0.01 ≤ φ ≤ 0.04 and Reynolds numbers 2400 ≤ Re ≤ 2700 for the different shaped tubes of the heat exchanger. The results indicate that the heat exchange rate is a growing function of the increasing nanoparticle concentration and velocity of the heat transfer fluid. The diamond-shaped tubes show a better geometric shape for obtaining the superior heat transfer of the heat exchanger. Heat transfer is further enhanced by using the hybrid nanofluid, and the enhancement goes up to 103.07% with a particle concentration of 2%. The corresponding entropy generation is also minimal with the diamond-shaped tubes. The outcome of the study is very significant in the industrial field and can solve many heat transfer problems.

4.
Sci Rep ; 12(1): 18053, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302788

RESUMO

Bioconvective heat and mass transport phenomena have recently been the subject of interest in diverse fields of applications pertaining to the motion of fluids and their thermophysical properties. The transport processes in a system involving triple convective phenomena, irregular geometry, and boundary conditions constitute a complex phenomenon. This work aims to explore the mixed thermo-bioconvection of magnetically susceptible fluid containing copper nanoparticles and oxytactic bacteria in a novel W-shaped porous cavity. The buoyant convention is generated due to the isothermal heating at the wavy bottom wall, whereas the mixed convection is induced due to the shearing motion of the top-cooled sliding wall. Furthermore, the bioconvection is induced due to the manifestation of oxytactic bacteria or organisms. The inclined sidewalls are insulated. The geometry is packed with water based Cu nanoparticle mixed porous structure, which is subjected to a magnetizing field acted horizontally. The complex transport equations are transformed into nondimensional forms, which are then computed using the finite volume-based developed code. The coupled triple-convective flow physics are explored for a wide range of involved controlling parameters, which could provide helpful insight to the system designer for its proper operation. The shape of geometry can be considered one of the important parameters to control the heat and mass transport phenomena. In general, the influence of amplitude (δ) is more compared to the waviness number (m) of the undulations. The magnitude of heat (Nu) and mass (Sh) transfer rate for the W-shaped cavity is high compared to conventional square and trapezoidal-shaped cavities. The output of the analysis could be very helpful for the designer for modeling devices operating on nanotechnology-based bioconvection, microbial fuel cells, and others.


Assuntos
Convecção , Nanotecnologia , Porosidade , Temperatura Alta , Bactérias
5.
Dalton Trans ; 46(33): 10963-10985, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28766668

RESUMO

Refluxing [VIVO(ß-diketonate)2], namely [VIVO(acetylacetonate)2] and [VIVO(benzoylacetonate)2], separately with an equivalent or excess amount of 2-aminobenzoylhydrazide (ah) in laboratory grade (LG) CH3OH in aerobic conditions afforded non-oxidovanadium(iv) and oxidovanadium(v) complexes of the type [VIV(L1)2] (1), [VVO(L1)(OCH3)]2 (3) and [VIV(L2)2] (2), and [VVO(L2)(OCH3)] (4), respectively. (L1)2- and (L2)2- represent the dianionic forms of 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2), respectively, (general abbreviation, H2L), which was formed by the in situ condensation of ah with the respective coordinated [ß-diketonate] in medium-to-good yield. The yield of different resulting products was dependent upon the ratio of ah to [VIVO(ß-diketonate)2]. For example, the yield of 1 and 2 complexes increased significantly associated with a decrease in the amount of 3 and 4 with an increase in the molar ratio of ah. Upon replacing CH3OH by a non-hydroxylic solvent, LG CHCl3, the above reaction yielded only oxidovanadium(v) complexes of the type [VVO(L1)(OH)]2 (5), [VVO(L2)(OH)] (6) and [VO3(L)2] (7, 8) whereas, upon replacing CHCl3 by another non-hydroxylic solvent, namely LG CH3CN, only the respective [VO3(L)2] (7, 8) complex was isolated in 72-78% yield. However, upon performing the above reactions in the absence of air using dry CH3OH or dry CHCl3, only the respective [VIV(L)2] complex was obtained, suggesting that aerial oxygen was the oxidising agent and the type of pentavalent product formed was dependent upon the nature of solvent used. Complexes 3 and 4 were converted, respectively, to 7 and 8 on refluxing in LG CHCl3via the respective unstable complex 5 and 6. The DFT calculated change in internal energy (ΔE) for the reactions 2[VVO(L2)(OCH3)] + 2H2O → 2[VVO(L2)(OH)] + 2CH3OH and 2[VVO(L2)(OH)] → [VO3(L2)2] + H2O was, respectively, +3.61 and -7.42 kcal mol-1, suggesting that the [VVO(L2)(OH)] species was unstable and readily transformed to the stable [VO3(L2)2] complex. Upon one-electron reduction at an appropriate potential, each of 7 and 8 generated mixed-valence [(L)VVO-(µ-O)-OVIV(L)]- species, which showed valence-delocalisation at room temperature and localisation at 77 K. Some of the complexes showed a wide range of toxicity in a dose-dependent manner against lung cancer cells comparable with that observed with cis-platin.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrazinas/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Solventes/química , Vanádio/química , Aerobiose , Anaerobiose , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...