Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1863(8): 1292-1301, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034912

RESUMO

BACKGROUND: 4-hydroxyphenylacetic acid (HO-PAA) is produced by intestinal microbiota from L-tyrosine. High concentrations in human fecal water have been associated with cytotoxicity, urging us to test HO-PAA's effects on human colonocytes. We compared these effects with those of phenylacetic acid (PAA), phenol and acetaldehyde, also issued from amino acids fermentation. METHODS: HT-29 Glc-/+ human colonocytes were exposed for 24 h to metabolites at concentrations between 350 and 1000 µM for HO-PAA and PAA, 250-1500 µM for phenol and 25-500 µM for acetaldehyde. We evaluated metabolites'cytotoxicity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and DNA quantification assays, reactive oxygen species (ROS) production with H2DCF-DA, and DNA damage with the comet assay. We measured cell oxygen consumption and mitochondrial complexes activity by polarography. RESULTS: Although HO-PAA displayed no cytotoxic effect on colonocytes, it decreased mitochondrial complex I activity and oxygen consumption. This was paralleled by an increase in ROS production and DNA alteration. Cells pretreatment with N-acetylcysteine, a ROS scavenger, decreased genotoxic effects of HO-PAA, indicating implication of oxidative stress in HO-PAA's genotoxicity. PAA and phenol did not reproduce these effects, but were cytotoxic towards colonocytes. Last, acetaldehyde displayed no effect in terms of cytotoxicity and mitochondrial metabolic activity, but increased DNA damage. CONCLUSIONS: Several bacterial metabolites produced from amino acids displayed deleterious effects on human colonocytes, in terms of genotoxicity (HO-PAA and acetaldehyde) or cytotoxicity (PAA and phenol). GENERAL SIGNIFICANCE: This study helps understanding the consequences of intestinal microbiota's metabolic activity on the host since amino acids fermentation can lead to the formation of compounds toxic towards colonic epithelial cells.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Colo/metabolismo , DNA/metabolismo , Estresse Oxidativo , Células HT29 , Humanos , Técnicas In Vitro , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...