Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 18(5): 628-39, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16014328

RESUMO

During development, antagonists of 5-HT(2) receptor subtypes cause morphological defects of mesodermal and neural crest derivatives including the craniofacial skeleton. We used an inducible mesoblastic cell line, C1, able to fully convert into osteocytes within 12 days, to assess the involvement of 5-HT(2) receptors during osteogenic differentiation. On day 5 of the osteogenic program, immediately before matrix mineralization, the cells selectively implement 5-HT(2B) receptors (5-HT(2B)R) which remain functional until terminal differentiation. In 5-HT-depleted medium, the receptor exhibits a constitutive activity leading to basal nitric oxide (NO) release and phospholipase A2 (PLA2)-dependent arachidonic acid (AA) production. Blockade of this intrinsic activity affects the efficiency of mineralization by decreasing calcium incorporation within the matrix by 40%. Optimal bone matrix mineralization involves both NO and PLA2 signaling pathways. Moreover, between day 5 and day 10, at the beginning of mineral deposition, the 5-HT(2B)R promotes prostaglandin E2 production through AA-dependent cyclooxygenase (COX) activation. From day 10 onwards, when C1 osteoblasts undergo conversion into osteocyte-like cells, COX activity is quenched. Altogether these observations indicate that the 5-HT(2B)R contributes in an autocrine manner to osteogenic differentiation and highlight a switch in the downstream targets of the receptor at the terminal stage of the program. Finally, in addition to its autocrine function, the 5-HT(2B)R responds to 5-HT by increasing NO production and AA release. These findings raise concern regarding the use of 5-HT(2B)R-related drugs that may interfere with bone metabolism in physiological or pathological situations.


Assuntos
Diferenciação Celular/fisiologia , Óxido Nítrico/metabolismo , Osteogênese/fisiologia , Fosfolipases A/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação , Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Linhagem Celular , Ativação Enzimática , Camundongos , Fosfolipases A2 , Prostaglandina-Endoperóxido Sintases/metabolismo , Ensaio Radioligante
2.
Arch Oral Biol ; 50(2): 271-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15721161

RESUMO

Odontoblasts and osteoblasts differ functionally and histologically. Because of their close relationship, mesenchymal cells derived from teeth and bone are difficult to distinguish ex vivo. Indeed, the main non-collagenous components of the odontoblastic extracellular matrix, dentin sialoprotein (DSP) or dentin matrix protein 1 (DMP1), have also been detected in osteoblasts. The need to develop cellular models of odontoblast differentiation and to identify markers specific for the odontoblast lineage, has led us to establish clonal cell lines from tooth germs of day 18 mouse embryos transgenic for an adenovirus-SV40 recombinant plasmid. In this study, we analyzed the phenotypes of three independent clones by RT-PCR and Western blot. These clones synthesised DSP, DMP1 and other extracellular matrix proteins typical of the odontoblast and are therefore likely to be derived from the pulp. Transcripts encoding a set of homeobox proteins involved in craniofacial development, such as Pax9, Msx1, Cbfa1, Dlx2 and 5 were also expressed albeit at a different level. These features of the pulpal clones are shared by the C1 mesodermal cells that are capable of differentiating along osteogenic, chondrogenic or adipogenic lineages In contrast, transcripts for two LIM-domain homeobox family genes (Lhx6 and Lhx7) were only detected in the dental clones. Since these genes are preferentially expressed in the mesenchyme of the developing tooth, this suggests that our transgenic-derived cell lines retain intrinsic properties of odontoblastic cells. They may help to characterise genes specifying the odontoblast phenotype and the signalling pathways underlying odontoblast differentiation.


Assuntos
Células Clonais , Polpa Dentária/embriologia , Odontoblastos/citologia , Germe de Dente/citologia , Adenoviridae/genética , Animais , Biomarcadores/análise , Western Blotting , Técnicas de Cultura de Células , Separação Celular , Polpa Dentária/citologia , Perfilação da Expressão Gênica , Genes , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Proteínas Recombinantes de Fusão/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus 40 dos Símios/genética , Proteínas Virais/genética
3.
J Biol Chem ; 276(51): 47975-81, 2001 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-11606572

RESUMO

The receptor for the cytokine leukemia inhibitory factor (LIF) associates the low affinity binding component gp190 and the high affinity converter gp130, both of which are members of the family of hematopoietic receptors characterized by the cytokine receptor homology (CRH) domain. The gp190 is among the very few members of this large family to contain two CRH domains. The membrane-distal one (herein called D1) is followed by an Ig-like domain, a membrane-proximal CRH domain called D2, and three type III fibronectin repeats. We raised a series of monoclonal antibodies specific for the human gp190. Among them was the blocking antibody 1C7, which was directed against the D1Ig region and which impaired the binding of LIF to gp190. Another blocking antibody, called 12D3, was directed against domain D2 and interfered with the reconstitution of the high affinity receptor complex, independently of the interaction between LIF and gp190. The blocking effect of these two antibodies concerned four cytokines known to use gp190, i.e. LIF, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1. Among 23 antibodies tested alone or in combination (two anti-D2 and 21 anti-D1Ig), only the mixture of the two anti-D2 antibodies displayed agonistic activity in the absence of the cytokine. Taken together, these results demonstrate that the two CRH domains of gp190 play different functions in ligand binding and receptor activation.


Assuntos
Anticorpos Monoclonais/imunologia , Citocinas/metabolismo , Receptores de Citocinas/imunologia , Animais , Divisão Celular/fisiologia , Linhagem Celular , Cricetinae , Citocinas/fisiologia , Epitopos/imunologia , Citometria de Fluxo , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Receptores de Citocinas/química , Receptores de Citocinas/metabolismo , Receptores de OSM-LIF , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...