Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049306

RESUMO

P-type multiwalled carbon nanotubes (MWCNTs), as well as heterostructures fabricated by direct deposition of inorganic thermoelectric materials as antimony and bismuth chalcogenides on MWCNT networks are known as perspective materials for application in flexible thermoelectric polymer-based composites. In this work, the electrical response of three types of Sb2Te3-MWCNT heterostructures-based flexible films-free standing on a flexible substrate, encapsulated in polydimethylsiloxane (PDMS), and mixed in polyvinyl alcohol (PVA) is studied in comparison with the flexible films prepared by the same methods using bare MWCNTs. The electrical conductance of these films when each side of it was subsequently subjected to compressive and tensile stress during the film bending down to a 3 mm radius is investigated in relation to the distribution gradient of Sb2Te3-MWCNT heterostructures or bare MWCNTs within the film. It is found that all investigated Sb2Te3-MWCNT films exhibit a reversible increase in the conductance in response to the compressive stress of the film side with the highest filler concentration and its decrease in response to the tensile stress. In contrast, free-standing and encapsulated bare MWCNT networks with uniform distribution of nanotubes showed a decrease in the conductance irrelevant to the bending direction. In turn, the samples with the gradient distribution of the MWCNTs, prepared by mixing the MWCNTs with PVA, revealed behavior that is similar to the Sb2Te3-MWCNT heterostructures-based films. The analysis of the processes impacting the changes in the conductance of the Sb2Te3-MWCNT heterostructures and bare MWCNTs is performed. The proposed in this work bending method can be applied for the control of the uniformity of distribution of components in heterostructures and fillers in polymer-based composites.

2.
Polymers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501527

RESUMO

This work is devoted to the fabrication of p-type polyvinyl alcohol (PVA)-based flexible thermoelectric composites using multiwall carbon nanotubes-antimony telluride (MWCNT-Sb2Te3) hybrid filler, the study of the thermoelectrical and mechanical properties of these composites, and the application of these composites in two types (planar and radial) of thermoelectric generators (TEG) in combination with the previously reported PVA/MWCNT-Bi2Se3 flexible thermoelectric composites. While the power factors of PVA/MWCNT-Sb2Te3 and PVA/MWCNT-Bi2Se3 composites with 15 wt.% filler were found to be similar, the PVA/MWCNT-Sb2Te3 composite with 25 wt.% filler showed a ~2 times higher power factor in comparison with the PVA/MWCNT-Bi2Se3 composites with 30 wt.% filler, which is attributed to its reduced electrical resistivity. In addition, developed PVA/MWCNT-Sb2Te3 composites showed a superior mechanical, electrical, and thermoelectric stability during 100 consequent bending cycles down to a 3 mm radius, with insignificant fluctuations of the resistance within 0.01% of the initial resistance value of the not bent sample. Demonstrated for the first time, 2-leg TEGs composed from p-type PVA/MWCNT-Sb2Te3 and n-type PVA/MWCNT-Bi2Se3 composites showed a stable performance under different external loads and showed their potential for applications involving low temperature gradients and power requirements in the range of nW.

3.
Polymers (Basel) ; 13(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34883767

RESUMO

This research is devoted to the fabrication of polyvinyl alcohol (PVOH) based n-type thermoelectric composites with innovative hybrid bismuth selenide-multiwalled carbon nanotube (Bi2Se3-MWCNT) fillers for application in flexible thermoelectric devices. Hybrid fillers were synthesized by direct deposition of Bi2Se3 on multiwalled carbon nanotubes using a physical vapor deposition method, thus ensuring direct electrical contact between the carbon nanotubes and Bi2Se3. The Seebeck coefficient of prepared PVOH/Bi2Se3-MWCNT composites was found to be comparable with that for the Bi2Se3 thin films, reaching -100 µV·K-1 for the composite with 30 wt.% filler, and fluctuations of the resistance of these composites did not exceed 1% during 100 repetitive bending cycles down to 10 mm radius, indicating the good mechanical durability of these composites and proving their high potential for application in flexible thermoelectrics. In addition, other properties of the fabricated composites that are important for the use of polymer-based materials such as thermal stability, storage modulus and linear coefficient of thermal expansion were found to be improved in comparison with the neat PVOH.

4.
Phys Chem Chem Phys ; 22(23): 13299-13305, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32507872

RESUMO

Polymer contact electrification offers the possibility to harvest mechanical energy using lightweight, flexible and low-cost materials, but the mechanism itself is still unresolved. Several recent studies confirm heterolytic covalent bond breaking as the mechanism for surface charge formation. Here it is shown that the reason for the formation of surface charge by contacting two identical polymers results from the fluctuation in the surface irregularities, and that contacted materials with a greater porosity or surface roughness differential result in a greater generation of surface charge. Porosity and surface roughness create uneven surface length percentage changes in the lateral direction during deformation, which changes the charge density across the surface during relaxation. Multilayered membranes exhibit flexoelectric properties upon pressing and releasing by generating charge without separating individual membrane layers. This new insight deepens the understanding of polymer contact electrification and highlights better ways to prepare triboelectric or flexoelectric nanogenerator devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...