Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Exp Cell Res ; 436(1): 113961, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341080

RESUMO

Non-coding RNAs, particularly small Cajal-body associated RNAs (scaRNAs), play a significant role in spliceosomal RNA modifications. While their involvement in ischemic myocardium regeneration is known, their role in cardiac development is unexplored. We investigated scaRNA20's role in iPSC differentiation into cardiomyocytes (iCMCs) via overexpression and knockdown assays. We measured scaRNA20-OE-iCMCs and scaRNA20-KD-iCMCs contractility using Particle Image Velocimetry (PIV), comparing them to control iCMCs. We explored scaRNA20's impact on alternative splicing via pseudouridylation (Ψ) of snRNA U12, analyzing its functional consequences in cardiac differentiation. scaRNA20-OE-iPSC differentiation increased beating colonies, upregulated cardiac-specific genes, activated TP53 and STAT3, and preserved contractility under hypoxia. Conversely, scaRNA20-KD-iCMCs exhibited poor differentiation and contractility. STAT3 inhibition in scaRNA20-OE-iPSCs hindered cardiac differentiation. RNA immunoprecipitation revealed increased Ψ at the 28th uridine of U12 RNA in scaRNA20-OE iCMCs. U12-KD iCMCs had reduced cardiac differentiation, which improved upon U12 RNA introduction. In summary, scaRNA20-OE in iPSCs enhances cardiomyogenesis, preserves iCMC function under hypoxia, and may have implications for ischemic myocardium regeneration.


Assuntos
RNA Nuclear Pequeno , RNA , Humanos , RNA Nuclear Pequeno/genética , Processamento Alternativo , Hipóxia , Miócitos Cardíacos
2.
Cardiol Young ; 33(2): 221-226, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35301964

RESUMO

BACKGROUND: As part of a quality improvement project beginning in October 2011, our centre introduced changes to reduce radiation exposure during paediatric cardiac catheterisations. This led to significant initial decreases in radiation to patients. Starting in April 2016, we sought to determine whether these initial reductions were sustained. METHODS: After a 30-day trial period, we implemented (1) weight-based reductions in preset frame rates for fluoroscopy and angiography, (2) increased use of collimators and safety shields, (3) utilisation of stored fluoroscopy and virtual magnification, and (4) hiring of a devoted radiation technician. We collected patient weight (kg), total fluoroscopy time (min), and procedure radiation dosage (cGy-cm2) for cardiac catheterisations between October, 2011 and September, 2019. RESULTS: A total of 1889 procedures were evaluated (196 pre-intervention, 303 in the post-intervention time period, and 1400 in the long-term group). Fluoroscopy times (18.3 ± 13.6 pre; 19.8 ± 14.1 post; 17.11 ± 15.06 long-term, p = 0.782) were not significantly different between the three groups. Patient mean radiation dose per kilogram decreased significantly after the initial quality improvement intervention (39.7% reduction, p = 0.039) and was sustained over the long term (p = 0.043). Provider radiation exposure was also significantly decreased from the onset of this project through the long-term period (overall decrease of 73%, p < 0.01) despite several changes in the interventional cardiologists who made up the team over this time period. CONCLUSION: Introduction of technical and clinical practice changes can result in a significant reduction in radiation exposure for patients and providers in a paediatric cardiac catheterisation laboratory. These reductions can be maintained over the long term.


Assuntos
Melhoria de Qualidade , Exposição à Radiação , Criança , Humanos , Exposição à Radiação/prevenção & controle , Doses de Radiação , Angiografia , Cateterismo Cardíaco/métodos , Fluoroscopia/efeitos adversos , Fluoroscopia/métodos
3.
J Am Heart Assoc ; 11(17): e025864, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36000433

RESUMO

Background The systemic inflammation that occurs after exposure to cardiopulmonary bypass (CPB), which is especially severe in neonatal patients, is associated with poorer outcomes and is not well understood. In order to gain deeper insight into how exposure to bypass activates inflammatory responses in circulating leukocytes, we studied changes in microRNA (miRNA) expression during and after exposure to bypass. miRNAs are small noncoding RNAs that have important roles in modulating protein levels and function of cells. Methods and Results We performed miRNA-sequencing on leukocytes isolated from neonatal patients with CPB (n=5) at 7 time points during the process of CPB, including before the initiation of bypass, during bypass, and at 3 time points during the first 24 hours after weaning from bypass. We identified significant differentially expressed miRNAs using generalized linear regression models, and miRNAs were defined as statistically significant using a false discovery rate-adjusted P<0.05. We identified gene targets of these miRNAs using the TargetScan database and identified significantly enriched biological pathways for these gene targets. We identified 54 miRNAs with differential expression during and after CPB. These miRNAs clustered into 3 groups, including miRNAs that were increased during and after CPB (3 miRNAs), miRNAs that decreased during and after CPB (10 miRNAs), and miRNAs that decreased during CPB but then increased 8 to 24 hours after CPB. A total of 38.9% of the target genes of these miRNAs were significantly differentially expressed in our previous study. miRNAs with altered expression levels are predicted to significantly modulate pathways related to inflammation and signal transduction. Conclusions The unbiased profiling of the miRNA changes that occur in the circulating leukocytes of patients with bypass provides deeper insight into the mechanisms that underpin the systemic inflammatory response that occurs in patients after exposure to CPB. These data will help the development of novel treatments and biomarkers for bypass-associated inflammation.


Assuntos
Ponte Cardiopulmonar , MicroRNAs , Biomarcadores , Ponte Cardiopulmonar/efeitos adversos , Humanos , Recém-Nascido , Inflamação/etiologia , Leucócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
BMC Vet Res ; 17(1): 244, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266445

RESUMO

BACKGROUND: The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS: The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS: While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.


Assuntos
Gatos , Gordura Intra-Abdominal/citologia , Células-Tronco Mesenquimais/citologia , Gordura Subcutânea/citologia , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/veterinária , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Genitália Feminina/cirurgia , Masculino , Células-Tronco Mesenquimais/fisiologia
6.
Exp Cell Res ; 400(1): 112508, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549576

RESUMO

Noonan syndrome (NS) is a dominant autosomal genetic disorder, associated with mutations in several genes that exhibit multisystem abnormal development including cardiac defects. NS associated with the Son of Sevenless homolog 1 (SOS1) gene mutation attributes to the development of cardiomyopathy and congenital heart defects. Since the treatment option for NS is very limited, an in vitro disease model with SOS1 gene mutation would be beneficial for exploring therapeutic possibilities for NS. We reprogrammed cardiac fibroblasts obtained from a NS patient and normal control skin fibroblasts (C-SF) into induced pluripotent stem cells (iPSCs). We identified NS-iPSCs carry a heterozygous single nucleotide variation in the SOS1 gene at the c.1654A > G. Furthermore, the control and NS-iPSCs were differentiated into induced cardiomyocytes (iCMCs), and the electron microscopic analysis showed that the sarcomeres of the NS-iCMCs were highly disorganized. FACS analysis showed that 47.5% of the NS-iCMCs co-expressed GATA4 and cardiac troponin T proteins, and the mRNA expression levels of many cardiac related genes, studied by qRT-PCR array, were significantly reduced when compared to the control C-iCMCs. We report for the first time that NS-iPSCs carry a single nucleotide variation in the SOS1 gene at the c.1654A>G were showing significantly reduced cardiac genes and proteins expression as well as structurally and functionally compromised when compared to C-iCMCs. These iPSCs and iCMCs can be used as a modeling platform to unravel the pathologic mechanisms and also the development of novel drug for the cardiomyopathy in patients with NS.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Miócitos Cardíacos/patologia , Síndrome de Noonan/patologia , Proteína SOS1/genética , Estudos de Casos e Controles , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética
7.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232305

RESUMO

Cardiopulmonary bypass (CPB) is required during most cardiac surgeries. CBP drives systemic inflammation and multiorgan dysfunction that is especially severe in neonatal patients. Limited understanding of molecular mechanisms underlying CPB-associated inflammation presents a significant barrier to improve clinical outcomes. To better understand these clinical issues, we performed mRNA sequencing on total circulating leukocytes from neonatal patients undergoing CPB. Our data identify myeloid cells, particularly monocytes, as the major cell type driving transcriptional responses to CPB. Furthermore, IL-8 and TNF-α were inflammatory cytokines robustly upregulated in leukocytes from both patients and piglets exposed to CPB. To delineate the molecular mechanism, we exposed THP-1 human monocytic cells to CPB-like conditions, including artificial surfaces, high shear stress, and cooling/rewarming. Shear stress was found to drive cytokine upregulation via calcium-dependent signaling pathways. We also observed that a subpopulation of THP-1 cells died via TNF-α-mediated necroptosis, which we hypothesize contributes to post-CPB inflammation. Our study identifies a shear stress-modulated molecular mechanism that drives systemic inflammation in pediatric CPB patients. These are also the first data to our knowledge to demonstrate that shear stress causes necroptosis. Finally, we observe that calcium and TNF-α signaling are potentially novel targets to ameliorate post-CPB inflammation.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Citocinas/genética , Monócitos/imunologia , Monócitos/patologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio , Citocinas/biossíntese , Feminino , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-8/biossíntese , Interleucina-8/genética , Masculino , Modelos Animais , Monócitos/fisiologia , Necroptose/genética , Necroptose/fisiologia , RNA-Seq , Estresse Mecânico , Sus scrofa , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
8.
Sci Rep ; 10(1): 18051, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093519

RESUMO

Atrioventricular septal defects (AVSD) are a severe congenital heart defect present in individuals with Down syndrome (DS) at a > 2000-fold increased prevalence compared to the general population. This study aimed to identify risk-associated genes and pathways and to examine a potential polygenic contribution to AVSD in DS. We analyzed a total cohort of 702 individuals with DS with or without AVSD, with genomic data from whole exome sequencing, whole genome sequencing, and/or array-based imputation. We utilized sequence kernel association testing and polygenic risk score (PRS) methods to examine rare and common variants. Our findings suggest that the Notch pathway, particularly NOTCH4, as well as genes involved in the ciliome including CEP290 may play a role in AVSD in DS. These pathways have also been implicated in DS-associated AVSD in prior studies. A polygenic component for AVSD in DS has not been examined previously. Using weights based on the largest genome-wide association study of congenital heart defects available (2594 cases and 5159 controls; all general population samples), we found PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation increase in PRS and corresponding liability r2 values of approximately 1%, suggesting at least a small polygenic contribution to DS-associated AVSD. Future studies with larger sample sizes will improve identification and quantification of genetic contributions to AVSD in DS.


Assuntos
Antígenos de Neoplasias , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Síndrome de Down/genética , Estudo de Associação Genômica Ampla , Defeitos dos Septos Cardíacos/genética , Receptor Notch4 , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Risco , Sequenciamento Completo do Genoma
9.
Pediatr Cardiol ; 41(2): 341-349, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31953571

RESUMO

The heart is the first major organ to develop during embryogenesis and must receive proper spatiotemporal signaling for proper development. Failure of proper signaling between the first and second heart fields at twenty days gestation contributes to the generation of a congenital heart defect. The most common cyanotic congenital heart defect is tetralogy of Fallot (TOF) which requires surgical intervention in the first year of life. In right ventricular tissue of infants born with TOF, the levels of scaRNA1 are reduced and mRNA splicing is dysregulated. In this study, we investigate a method of quantifying pseudouridylation levels in relation to scaRNA1 levels in spliceosomal RNA U2 in three different groups of samples: right ventricular (RV) tissue of infants born with TOF versus RV tissue from normally developing infants, scaRNA1 knockdown in primary normal cardiomyocytes derived from normally developing infants, and scaRNA1 overexpression in primary cells derived from RV tissue from infants born with TOF. We hypothesize that the amount of pseudouridylation is dependent on scaRNA1 level, compromising spliceosomal function and therefore, contributing to the generation of a congenital heart defect. Our results revealed a statistically significant decrease of pseudouridylation levels in the right ventricular tissue of infants born with TOF compared to the controls. Knocking down the scaRNA1 levels in normal primary cardiomyocytes resulted in a statistically significant decrease of pseudouridylation. Finally, an overexpression of scaRNA1 in TOF primary cells resulted in an increase in pseudouridylation levels, but it did not achieve statistical significance. Our previous research provided an association between scaRNA levels, alternative splicing, and development. Here, we demonstrate that pseudouridylation levels in spliceosomal RNA U2 is dependent on the expression level of scaRNA1. Although further investigation is needed, we believe that scaRNA expression regulates biochemical modifications to spliceosomal RNAs, adjusting the fidelity of the spliceosome, allowing for controlled alternative splicing of mRNA that is important in embryonic development. If validated, this is an underappreciated mechanism that is critical for regulating proper embryonic development.


Assuntos
Desenvolvimento Embrionário/genética , Coração/embriologia , RNA Nuclear Pequeno , Processamento Alternativo , Humanos , Lactente , RNA Mensageiro/metabolismo , Spliceossomos , Tetralogia de Fallot/embriologia , Tetralogia de Fallot/genética
10.
PLoS One ; 14(12): e0226035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805133

RESUMO

Understanding the regulation of development can help elucidate the pathogenesis behind many developmental defects found in humans and other vertebrates. Evidence has shown that alternative splicing of messenger RNA (mRNA) plays a role in developmental regulation, but our knowledge of the underlying mechanisms that regulate alternative splicing are incomplete. Notably, a subset of small noncoding RNAs known as scaRNAs (small cajal body associated RNAs) contribute to spliceosome maturation and function through guiding covalent modification of spliceosomal RNAs with either methylation or pseudouridylation on specific nucleotides, but the developmental significance of these modifications is not well understood. Our focus is on one such scaRNA, known as SNORD94 or U94, that guides methylation on one specific cytosine (C62) on spliceosomal RNA U6, thus potentially altering spliceosome function during embryogenesis. We previously showed that in the myocardium of infants with heart defects, mRNA is alternatively spliced as compared to control tissues. We also demonstrated that alternatively spliced genes were concentrated in the pathways that control heart development. Furthermore, we showed that modifying expression of scaRNAs alters mRNA splicing in human cells, and zebrafish embryos. Here we present evidence that SNORD94 levels directly influence levels of methylation at its target region in U6, suggesting a potential mechanism for modifying alternative splicing of mRNA. The potential importance of scaRNAs as a developmentally important regulatory mechanism controlling alternative splicing of mRNA is unappreciated and needs more research.


Assuntos
Citosina/metabolismo , Regulação da Expressão Gênica , RNA Nucleolar Pequeno/genética , Spliceossomos/genética , Feminino , Humanos , Masculino , Metilação
11.
J Thorac Cardiovasc Surg ; 158(3): 882-890.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31005300

RESUMO

OBJECTIVES: Brain injury, leading to long-term neurodevelopmental deficits, is a major complication in neonates undergoing cardiac surgeries. Because the striatum is one of the most vulnerable brain regions, we used mRNA sequencing to unbiasedly identify transcriptional changes in the striatum after cardiopulmonary bypass and associated deep hypothermic circulatory arrest. METHODS: Piglets were subjected to cardiopulmonary bypass with deep hypothermic circulatory arrest at 18°C for 30 minutes and then recovered for 6 hours. mRNA sequencing was performed to compare changes in gene expression between the striatums of sham control and deep hypothermic circulatory arrest brains. RESULTS: We found 124 significantly upregulated genes and 74 significantly downregulated genes in the striatums of the deep hypothermic circulatory arrest group compared with the sham controls. Pathway enrichment analysis demonstrated that inflammation and apoptosis were the strongest pathways activated after surgery. Chemokines CXCL9, CXCL10, and CCL2 were the top upregulated genes with 32.4-fold, 22.2-fold, and 17.6-fold increased expression, respectively, in the deep hypothermic circulatory arrest group compared with sham controls. Concomitantly, genes involved in cell proliferation, cell-cell adhesion, and structural integrity were significantly downregulated in the deep hypothermic circulatory arrest group. Analysis of promoter regions of all upregulated genes revealed over-representation of nuclear factor-kB transcription factor binding sites. CONCLUSIONS: Our study provides a comprehensive view of global transcriptional changes in the striatum after deep hypothermic circulatory arrest and found strong activation of both inflammatory and apoptotic signaling pathways in the deep hypothermic circulatory arrest group. Nuclear factor-kB, a key driver of inflammation, appears to be an upstream regulator of the majority of the upregulated genes; hence, nuclear factor-kB inhibitors could potentially be tested for beneficial effects on neurologic outcome.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Citocinas/genética , Perfilação da Expressão Gênica , Mediadores da Inflamação , Neostriado/patologia , Transcriptoma , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Neostriado/metabolismo , Transdução de Sinais , Sus scrofa
12.
J Cardiovasc Dev Dis ; 5(2)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738469

RESUMO

Congenital heart disease (CHD) is a leading cause of death in children <1 year of age. Despite intense effort in the last 10 years, most CHDs (~70%) still have an unknown etiology. Conotruncal based defects, such as Tetralogy of Fallot (TOF), a common complex of devastating heart defects, typically requires surgical intervention in the first year of life. We reported that the noncoding transcriptome in myocardial tissue from children with TOF is characterized by significant variation in levels of expression of noncoding RNAs, and more specifically, a significant reduction in 12 small cajal body-associated RNAs (scaRNAs) in the right ventricle. scaRNAs are essential for the biochemical modification and maturation of small nuclear RNAs (spliceosomal RNAs), which in turn are critical components of the spliceosome. This is particularly important because we also documented that splicing of mRNAs that are critical for heart development was dysregulated in the heart tissue of infants with TOF. Furthermore, we went on to show, using the zebrafish model, that altering the expression of these same scaRNAs led to faulty mRNA processing and heart defects in the developing embryo. This review will examine how scaRNAs may influence spliceosome fidelity in exon retention during heart development and thus contribute to regulation of heart development.

13.
Trends Cardiovasc Med ; 28(2): 81-90, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28869095

RESUMO

Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.


Assuntos
Corpos Enovelados/metabolismo , RNA Nucleolar Pequeno/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Telomerase/metabolismo
14.
Front Neurosci ; 10: 376, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27587993

RESUMO

Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60-80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a "load" is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity in complex diseases. We anticipate that this method could be useful for improving the care of jaundiced newborns through its use as an at-risk screen. Importantly, this method would also be useful in uncovering basic knowledge about this and other polygenetic diseases whose genetic source is difficult to discern through traditional means such as a genome-wide association study.

15.
Biochim Biophys Acta ; 1852(8): 1619-29, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916634

RESUMO

Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations.


Assuntos
Processamento Alternativo/genética , Corpos Enovelados/genética , Coração/embriologia , Coração/crescimento & desenvolvimento , MicroRNAs/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento , Peixe-Zebra
16.
Pediatr Res ; 77(3): 434-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25518009

RESUMO

BACKGROUND: Neonatal jaundice resulting from elevated unconjugated bilirubin occurs in 60-80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention-deficit hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. METHODS: Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their nonjaundiced (Nj) littermates. Data were analyzed for young adult (3-4 mo), early middle-aged (9-10 mo), and late middle-aged (17-20 mo) male rats. RESULTS: jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17-20 mo of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9-10 mo in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized, and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17-20-mo-old jj rats. CONCLUSION: These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND.


Assuntos
Marcha Atáxica/etiologia , Hipercinese/etiologia , Icterícia Neonatal/complicações , Fatores Etários , Animais , Bilirrubina/sangue , Locomoção/fisiologia , Masculino , Ratos , Ratos Gunn
17.
Cells ; 3(3): 713-23, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25257024

RESUMO

The importance of microRNAs for maintaining stability in the developing vertebrate heart has recently become apparent. In addition, there is a growing appreciation for the significance of microRNAs in developmental pathology, including the formation of congenital heart defects. We examined the expression of microRNAs in right ventricular (RV) myocardium from infants with idiopathic tetralogy of Fallot (TOF, without a 22q11.2 deletion), and found 61 microRNAs to be significantly changed in expression in myocardium from children with TOF compared to normally developing comparison subjects (O'Brien et al. 2012). Predicted targets of microRNAs with altered expression were enriched for gene networks that regulate cardiac development. We previously derived a list of 229 genes known to be critical to heart development, and found 44 had significantly changed expression in TOF myocardium relative to normally developing myocardium. These 44 genes had significant negative correlations with 33 microRNAs, each of which also had significantly changed expression. Here, we focus on miR-421, as it is significantly upregulated in RV tissue from infants with TOF; is predicted to interact with multiple members of cardiovascular regulatory pathways; and has been shown to regulate cell proliferation. We knocked down, and over expressed miR-421 in primary cells derived from the RV of infants with TOF, and infants with normally developing hearts, respectively. We found a significant inverse correlation between the expression of miR-421 and SOX4, a key regulator of the Notch pathway, which has been shown to be important for the cardiac outflow track. These findings suggest that the dysregulation of miR-421 warrants further investigation as a potential contributor to tetralogy of Fallot.

18.
Hum Genomics ; 8: 6, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24618031

RESUMO

Congenital heart defects (CHD) are the most common cause of death in children under the age of 1. Tetralogy of Fallot (TOF) is a severe CHD that results from developmental defects in the conotruncal outflow tract. Recently, a tissue-specific gene expression template (GET) was derived from microarray data that accurately characterized multiple normal human tissues. We used the GET to examine spatial, temporal, and a pathological condition (TOF) within a single organ, the heart. The GET, as previously defined, generally identified temporal and spatial differences in the cardiac tissue. Differences in the stoichiometry of the GET reflected the severe developmental disturbance associated with TOF. Our analysis suggests that the homoeostatic equilibrium assessed by the GET at the inter-organ level is generally maintained at the intra-organ level as well.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Tetralogia de Fallot/genética , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Especificidade de Órgãos , Tetralogia de Fallot/patologia
19.
PLoS One ; 9(1): e87472, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498113

RESUMO

Tetralogy of Fallot (TOF) is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH) microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months). Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs) ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1) for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001). We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.


Assuntos
Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Genoma Humano , Análise de Sequência com Séries de Oligonucleotídeos , Tetralogia de Fallot/genética , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glutationa Transferase/biossíntese , Ventrículos do Coração/metabolismo , Humanos , Lactente , Masculino , Tetralogia de Fallot/metabolismo
20.
Eur J Hum Genet ; 21(10): 1093-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23361223

RESUMO

We identified a novel homozygous 15q13.3 microdeletion in a young boy, with a complex neurodevelopmental disorder characterized by severe cerebral visual impairment with additional signs of congenital stationary night blindness, congenital hypotonia with areflexia, profound intellectual disability, and refractory epilepsy. The mechanisms by which the genes in the deleted region exert their effect are unclear. In this paper, we probed the role of downstream effects of the deletions as a contributing mechanism to the molecular basis of the observed phenotype. We analyzed gene expression of lymphoblastoid cells derived from peripheral blood of the proband and his relatives to ascertain the relative effects of the homozygous and heterozygous deletions. We identified 267 genes with apparent differential expression between the proband with the homozygous deletion and 3 age- and sex-matched typically developing controls. Several of the differentially expressed genes are known to influence neurodevelopment and muscular function, and thus may contribute to the observed cognitive impairment and hypotonia. We further investigated the role of CHRNA7 by measuring TNFα modulation (a potentially important pathway in regulating synaptic plasticity). We found that the cell line with the homozygous deletion lost the ability to inhibit the activation of tumor necrosis factor-α secretion. Our findings suggest downstream genes that may have been altered by the 15q13.3 homozygous deletion, and thus contributed to the severe developmental encephalopathy of the proband. Furthermore, we show that a potentially important pathway in learning and development is affected by the deletion of CHRNA7.


Assuntos
Transtornos Cromossômicos/genética , Genoma Humano , Homozigoto , Deficiência Intelectual/genética , Convulsões/genética , Transcriptoma , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 15/metabolismo , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Convulsões/diagnóstico , Convulsões/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...