Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 10: 1978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481965

RESUMO

The hydroalcoholic extract and ethyl acetate fraction of Punica granatum leaves have been known to exhibit anti-inflammatory activities. In this study, we investigated the therapeutic effects of galloyl-hexahydroxydiphenoyl (HHDP)-glucose isolated from pomegranate leaves on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Male BALB/c mice were treated with different doses of galloyl-HHDP-glucose (5, 50, and 100 mg/Kg) or dexamethasone at 5 mg/Kg (per os) 6 h after intra-tracheal instillation of LPS. Vehicle-treated mice were used as controls. Twenty-four hours after LPS challenge, bronchoalveolar lavage fluid (BALF), and lung samples were collected for analyses. They were evaluated by monitoring the expression of NF-κB, JNK, and cytokine genes and proteins, as well as cell migration and lung function. All doses of galloyl-HHDP-glucose inhibited LPS-induced JNK and NF-κB activation. Likewise, the galloyl-HHDP-glucose-treated animals presented reduced expression of the TNF-α, IL-6, and IL-1ß genes in the lungs and reduced TNF-α, IL-6, IL-1ß, and IL-8 protein levels when compared with the vehicle-treated LPS-challenged mice. In addition, the ALI mice treated with galloyl-HHDP-glucose also presented reduced lung inflammatory cell accumulation, especially that of neutrophils, in their BALF and lungs. In addition, galloyl-HHDP-glucose treatment markedly ameliorated the LPS-induced pulmonary mechanism complications and attenuated weight loss. Overall, we showed for the first time that galloyl-HHDP-glucose protects against ALI, and may be useful for treating ALI and other inflammatory disorders.


Assuntos
Lesão Pulmonar Aguda/patologia , Taninos Hidrolisáveis/farmacologia , Pulmão/efeitos dos fármacos , Extratos Vegetais/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios/farmacologia , Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Folhas de Planta , Punica granatum
3.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L217-L230, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881407

RESUMO

Sakuranetin is the main isolate flavonoid from Baccharis retusa (Asteraceae) leaves and exhibits anti-inflammatory and antioxidative activities. Acute respiratory distress syndrome is an acute failure of the respiratory system for which effective treatment is urgently necessary. This study investigated the preventive and therapeutic effects of sakuranetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Animals were treated with intranasal sakuranetin 30 min before or 6 h after instillation of LPS. Twenty-four hours after ALI was induced, lung function, inflammation, macrophages population markers, collagen fiber deposition, the extent of oxidative stress, and the expression of matrix metalloprotease-9 (MMP-9), tissue inhibitor of MMP-9 (TIMP-1) and NF-κB were evaluated. The animals began to show lung alterations 6 h after LPS instillation, and these changes persisted until 24 h after LPS administration. Preventive and therapeutic treatment with sakuranetin reduced the neutrophils in the peripheral blood and in the bronchial alveolar lavage. Sakuranetin treatment also reduced macrophage populations, particularly that of M1-like macrophages. In addition, sakurnaetin treatment reduced keratinocyte-derived chemokines (IL-8 homolog) and NF-κB levels, collagen fiber formation, MMM-9 and TIMP-1-positive cells, and oxidative stress in lung tissues compared with LPS animals treated with vehicle. Finally, sakuranetin treatment also reduced total protein, and the levels of TNF-α and IL-1ß in the lung. This study shows that sakuranetin prevented and reduced pulmonary inflammation induced by LPS. Because sakuranetin modulates oxidative stress, the NF-κB pathway, and lung function, it may constitute a novel therapeutic candidate to prevent and treat ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Flavonoides/uso terapêutico , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/complicações , Animais , Biomarcadores/metabolismo , Polaridade Celular/efeitos dos fármacos , Colágeno/metabolismo , Complacência (Medida de Distensibilidade)/efeitos dos fármacos , Citocinas/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Pneumonia/sangue , Pneumonia/complicações , Pneumonia/tratamento farmacológico , Pneumonia/fisiopatologia , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...