Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113521, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461552

RESUMO

Time-resolved x-ray self-emission imaging of hot spots in inertial confinement fusion experiments along several lines of sight provides critical information on the pressure and the transient morphology of the hot spot on the University of Rochester's OMEGA Laser System. At least three quasi-orthogonal lines of sight are required to infer the tomographic information of the hot spots of deuterium-tritium cryogenic layered implosions. OMEGA currently has two time-gated x-ray hot-spot imagers: the time-resolved Kirkpatrick-Baez x-ray microscope and the single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI). The time-gated x-ray hot-spot imager (XRHSI) is being developed for use on OMEGA as the third line of sight for the high-yield operation of up to 4 × 1014 neutrons. XRHSI follows the SLOS-TRXI concept; however, it will have improved spatial and temporal resolutions of 5 µm and 20 ps, respectively. The simultaneous operation of the three instruments will provide 3-D reconstructions of the assembled hot-spot fuel at various times through peak thermonuclear output. The technical approach consists of a pinhole array imager and demagnifying time-dilation drift tube that are coupled to two side-by-side hybrid complementary metal-oxide semiconductor (hCMOS) image sensors. To minimize the background and to harden the diagnostics, an angled drift-tube assembly shifting the hCMOS sensors out of the direct line of sight and neutron shielding will be applied. The technical design space for the instrument will be discussed and the conceptual design will be presented.

2.
Appl Opt ; 60(36): 11104-11124, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201099

RESUMO

The multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics. Further extensions of the laser support ultrahigh-intensity laser development of an all-OPCPA system and a Raman plasma amplifier. A short summary of the variety of scientific experiments conducted on MTW is also presented.

3.
Rev Sci Instrum ; 90(3): 035103, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927813

RESUMO

Solid-state optical fiducial timing pulse generators provide a convenient and accurate method to include timing fiducials in a streak-camera image for time-base correction. Current commercially available vertical-cavity surface-emitting lasers (VCSELs) emitting in the visible range can be amplitude modulated up to 5 GHz. An optically passive method is utilized to interleave a time-delayed path of the 5-GHz pulsed light with itself, producing a 10-GHz pulsed fiducial, or comb. Comb pulse rates at 0.5, 1.0, and 2.5 GHz can also be selected. The instrument presented is a self-contained and portable generator with primary use for streak-camera temporal calibration. Applications can also be extended to many other optical timing needs. The VCSEL output is fiber optic coupled at a wavelength of 680 nm (visible red) with a nearly Gaussian pulse shape. The peak power of each ∼50-ps full width at half maximum (FWHM) comb pulse at 5-GHz operation, or picket, is approximately 5 mW. The low phase noise of the internal microwave modulation drive source provides low pulse to pulse jitter. An external reference frequency standard can be utilized to synchronize the output to external timing equipment. A selectable internal reference frequency crystal oscillator is incorporated for stand-alone operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...