Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4095, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796844

RESUMO

Charge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund's physics in strongly correlated photoexcited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲10 fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2 ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes slightly above the Néel temperature. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and antiferromagnetic spin correlations.

2.
Phys Rev Lett ; 115(22): 227002, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650316

RESUMO

We develop a microscopic and gauge-invariant theory for collective modes resulting from the phase of the superconducting order parameter in noncentrosymmetric superconductors. Considering various crystal symmetries, we derive the corresponding gauge mode ω_{G}(q) and find, in particular, new Leggett modes ω_{L}(q) with characteristic properties that are unique to noncentrosymmetric superconductors. We calculate their mass and dispersion that reflect the underlying spin-orbit coupling and thus the balance between triplet and singlet superconductivity occurring simultaneously. Finally, we demonstrate the role of the Anderson-Higgs mechanism: while the long-range Coulomb interaction shifts ω_{G}(q) to the condensate plasma mode ω_{P}(q), it leaves the mass Λ_{0} of the new Leggett mode unaffected and only slightly modifies its dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...