Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 373: 114648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081352

RESUMO

Environmental enrichment (EE) facilitates motor and cognitive recovery after traumatic brain injury (TBI). Historically, EE has been provided immediately and continuously after TBI, but this paradigm does not model the clinic where rehabilitation is typically not initiated until after critical care. Yet, treating TBI early may facilitate recovery. Hence, we sought to provide amantadine (AMT) as a bridge therapy before commencing EE. It was hypothesized that bridging EE with AMT would augment motor and cognitive benefits. Anesthetized adult male rats received a cortical impact (2.8 mm deformation at 4 m/s) or sham surgery and then were housed in standard (STD) conditions where they received intraperitoneal AMT (10 mg/kg or 20 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 h after surgery and once daily during the 6-day bridge phase or once daily for 19 days for the non-bridge groups (i.e., continuously STD-housed) to compare the effects of acute AMT plus EE vs. chronic AMT alone. Abbreviated EE, which was presented to closer emulate clinical rehabilitation (e.g., 6 h/day), began on day 7 for the AMT bridge and chronic EE groups. Motor (beam-walking) and cognition (acquisition of spatial learning and memory) were assessed on days 7-11 and 14-19, respectively. Cortical lesion volume and hippocampal cell survival were quantified on day 21. EE, whether provided in combination with VEH or AMT, and AMT (20 mg/kg) + STD, benefitted motor and cognition vs. the STD-housed VEH and AMT (10 mg/kg) groups (p < 0.05). The AMT (20 mg/kg) + EE group performed better than the VEH + EE, AMT (10 mg/kg) + EE, and AMT (20 mg/kg) + STD groups in the acquisition of spatial learning (p < 0.05) but did not differ in motor function (p > 0.05). All groups receiving EE exhibited decreased cortical lesion volumes and increased CA3 neuron survival relative to the STD-housed groups (p < 0.05) but did not differ from one another (p > 0.05). The added cognitive benefit achieved by bridging EE with AMT (20 mg/kg) supports the hypothesis that the temporal separation of combinational therapies is more effective after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Desempenho Psicomotor , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Meio Ambiente , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Amantadina/farmacologia , Amantadina/uso terapêutico , Aprendizagem em Labirinto/fisiologia , Modelos Animais de Doenças
2.
Exp Neurol ; 369: 114544, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726048

RESUMO

Traumatic brain injury (TBI) causes neurobehavioral and cognitive impairments that negatively impact life quality for millions of individuals. Because of its pernicious effects, numerous pharmacological interventions have been evaluated to attenuate the TBI-induced deficits or to reinstate function. While many such pharmacotherapies have conferred benefits in the laboratory, successful translation to the clinic has yet to be achieved. Given the individual, medical, and societal burden of TBI, there is an urgent need for alternative approaches to attenuate TBI sequelae and promote recovery. Music based interventions (MBIs) may hold untapped potential for improving neurobehavioral and cognitive recovery after TBI as data in normal, non-TBI, rats show plasticity and augmented cognition. Hence, the aim of this study was to test the hypothesis that providing a MBI to adult rats after TBI would improve cognition, neurobehavior, and histological endpoints. Adult male rats received a moderate-to-severe controlled cortical impact injury (2.8 mm impact at 4 m/s) or sham surgery (n = 10-12 per group) and 24 h later were randomized to classical Music or No Music (i.e., ambient room noise) for 3 h/day from 19:00 to 22:00 h for 30 days (last day of behavior). Motor (beam-walk), cognitive (acquisition of spatial learning and memory), anxiety-like behavior (open field), coping (shock probe defensive burying), as well as histopathology (lesion volume), neuroplasticity (BDNF), and neuroinflammation (Iba1, and CD163) were assessed. The data showed that the MBI improved motor, cognitive, and anxiety-like behavior vs. No Music (p's < 0.05). Music also reduced cortical lesion volume and activated microglia but increased resting microglia and hippocampal BDNF expression. These findings support the hypothesis and provide a compelling impetus for additional preclinical studies utilizing MBIs as a potential efficacious rehabilitative therapy for TBI.

3.
Brain Res ; 1807: 148314, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878341

RESUMO

Environmental enrichment (EE) confers significant increases in neurobehavioral and cognitive recovery and decreases histological damage in various models of traumatic brain injury (TBI). However, despite EE's pervasiveness, little is known regarding its prophylactic potential. Thus, the goal of the current study was to determine whether enriching rats prior to a controlled cortical impact exerts protection as evidenced by attenuated injury-induced neurobehavioral and histological deficits relative to rats without prior EE. The hypothesis was that enrichment prior to TBI would be protective. After two weeks of EE or standard (STD) housing, anesthetized adult male rats received either a controlled cortical impact (2.8 mm deformation at 4 m/s) or sham injury and then were placed in EE or STD conditions. Motor (beam-walk) and cognitive (spatial learning) performance were assessed on post-operative days 1-5 and 14-18, respectively. Cortical lesion volume was quantified on day 21. The group that was housed in STD conditions before TBI and received post-injury EE performed significantly better in motor, cognitive, and histological outcomes vs. both groups in STD conditions regardless of whether having received pre-injury EE or not (p < 0.05). That no differences in any endpoint were revealed between the two STD-housed groups after TBI suggests that enriching rats prior to TBI does not attenuate neurobehavioral or histological deficits and therefore does not support the hypothesis.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/prevenção & controle , Modelos Animais de Doenças , Meio Ambiente , Aprendizagem em Labirinto , Desempenho Psicomotor , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...