Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 87(19): 10064-71, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26302058

RESUMO

The quantification of genotoxic impurities (GIs) such as hydrazine (HZ) is of critical importance in the pharmaceutical industry in order to uphold drug safety. HZ is a particularly intractable GI and its detection represents a significant technical challenge. Here, we present, for the first time, the use of electrochemical analysis to achieve the required detection limits by the pharmaceutical industry for the detection of HZ in the presence of a large excess of a common active pharmaceutical ingredient (API), acetaminophen (ACM) which itself is redox active, typical of many APIs. A flow injection analysis approach with electrochemical detection (FIA-EC) is utilized, in conjunction with a coplanar boron doped diamond (BDD) microband electrode, insulated in an insulating diamond platform for durability and integrated into a two piece flow cell. In order to separate the electrochemical signature for HZ such that it is not obscured by that of the ACM (present in excess), the BDD electrode is functionalized with Pt nanoparticles (NPs) to significantly shift the half wave potential for HZ oxidation to less positive potentials. Microstereolithography was used to fabricate flow cells with defined hydrodynamics which minimize dispersion of the analyte and optimize detection sensitivity. Importantly, the Pt NPs were shown to be stable under flow, and a limit of detection of 64.5 nM or 0.274 ppm for HZ with respect to the ACM, present in excess, was achieved. This represents the first electrochemical approach which surpasses the required detection limits set by the pharmaceutical industry for HZ detection in the presence of an API and paves the wave for online analysis and application to other GI and API systems.


Assuntos
Acetaminofen/análise , Analgésicos não Narcóticos/análise , Técnicas Eletroquímicas/instrumentação , Análise de Injeção de Fluxo/instrumentação , Hidrazinas/análise , Desenho de Equipamento , Humanos , Limite de Detecção
2.
Anal Chem ; 86(21): 10834-40, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25263331

RESUMO

A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.


Assuntos
Boro , Diamante , Técnicas Eletroquímicas/métodos , Eletrodos , Sulfeto de Hidrogênio/química , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Microscopia Eletrônica de Varredura , Solubilidade
3.
Anal Chem ; 86(11): 5238-44, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24814161

RESUMO

Highly doped, boron doped diamond (BDD) is an electrode material with great potential, but the fabrication of suitable electrodes in a variety of different geometries both at the macro- and microscale, with an insulating material that does not compromise the material properties of the BDD, presents technical challenges. In this Technical Note, a novel solution to this problem is presented, resulting in the fabrication of coplanar macro- and microscale BDD electrodes, insulated by insulating diamond, at the single and multiple, individually addressable level. Using a laser micromachining approach, the required electrode(s) geometry is machined into an insulating diamond substrate, followed by overgrowth of high quality polycrystalline BDD (pBDD) and polishing to reveal approximately nanometer roughness, coplanar all-diamond structures. Electrical contacting is possible using both top and bottom contacts, where the latter are defined using the laser to produce non-diamond-carbon (NDC) in the vicinity of the back side of the BDD. We present the fabrication of individually addressable ring, band, and disk electrodes with minimum, reproducible controlled dimensions of 50 µm (limited only by the laser system employed). The pBDD grown into the insulating diamond recesses is shown to be free from NDC and possesses excellent electrochemical properties, in terms of extended solvent windows, electrochemical reversibility, and capacitance.

4.
Anal Chem ; 86(1): 367-71, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24321045

RESUMO

A novel electrochemical approach to modifying aqueous solution pH in the vicinity of a detector electrode in order to optimize the electrochemical measurement signal is described. A ring disk electrode was employed where electrochemical decomposition of water on the ring was used to generate a flux of protons which adjusts the local pH controllably and quantifiably at the disk. Boron doped diamond (BDD) functioned as the electrode material given the stability of this electrode surface especially when applying high potentials (to electrolyze water) for significant periods of time. A pH sensitive iridium oxide electrode electrodeposited on the disk electrode demonstrated that applied positive currents on the BDD ring, up to +50 µA, resulted in a local pH decrease of over 4 orders of magnitude, which remained stable over the measurement time of 600 s. pH generation experiments were found to be in close agreement with finite element simulations. The dual electrode arrangement was used to significantly improve the stripping peak signature for Hg in close to neutral conditions by the generation of pH = 2.0, locally. With the ability to create a localized pH change electrochemically in the vicinity of the detector electrode, this system could provide a simple method for optimized analysis at the source, e.g., river and sea waters.


Assuntos
Boro/química , Diamante/química , Técnicas Eletroquímicas/métodos , Mercúrio/análise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Concentração de Íons de Hidrogênio , Metais Pesados/análise
5.
Anal Chem ; 85(15): 7230-40, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23790001

RESUMO

In order to produce polycrystalline oxygen-terminated boron-doped diamond (BDD) electrodes suitable for electroanalysis (i.e., widest solvent window, lowest capacitive currents, stable and reproducible current responses, and capable of demonstrating fast electron transfer) for outer sphere redox couples, the following factors must be considered. The material must contain enough boron that the electrode shows metal-like conductivity; electrical measurements demonstrate that this is achieved at [B] > 10(20) B atoms cm(-3). Even though BDD contains a lower density of states than a metal, it is not necessary to use extreme doping levels to achieve fast heterogeneous electron transfer (HET). An average [B] ~ 3 × 10(20) B atoms cm(-3) was found to be optimal; increasing [B] results in higher capacitive values and increases the likelihood of nondiamond carbon (NDC) incorporation. Hydrogen-termination causes a semiconducting BDD electrode to behave metal-like due to the additional surface conductivity hydrogen termination brings. Thus, unless [B] of the material is known, the electrical properties of the electrode may be incorrectly interpreted. Note, this layer (formed on a lapped electrode) is electrochemically unstable, an effect which is exacerbated at increased potentials. It is essential during growth that NDC is minimized as it acts to increase capacitive currents and decrease the solvent window. We found complete removal of NDC after growth using aggressive acid cleans, acid cycling, and diamond polishing impossible. Although hydrogen termination can mask the NDC signature in the solvent window and lower capacitive currents, this is not a practical procedure for improving sensitivity in electroanalysis. Finally, alumina polishing of lapped, NDC free, freestanding, BDD electrodes was found to be an effective way to produce well-defined, stable, and reproducible surfaces, which support fast (reversible) HET for Fe(CN)6(4-) electrolysis, the first time this has been reported at an oxygen-terminated surface.

6.
Anal Chem ; 85(1): 163-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23190004

RESUMO

The electrochemical measurement of dopamine (DA), in phosphate buffer solution (pH 7.4), with a limit of detection (LOD) of ∼5 pM in 50 µL (∼ 250 attomol) is achieved using a band electrode comprised of a sparse network of pristine single-walled carbon nanotubes (SWNTs), which covers <1% of the insulating substrate. The SWNT electrodes are deployed as amperometric (anodic) detectors in microfluidic cells, produced by microstereolithography, designed specifically for flow injection analysis (FIA). The flow cells, have a channel (duct) geometry, with cell height of 25 µm, and are shown to be hydrodynamically well-defined, with laminar Poiseuille flow. In the arrangement where solution continuously flows over the electrode but the electrode is only exposed to the analyte for short periods of time, the SWNT electrodes do not foul and can be used repeatedly for many months. The LOD for dopamine (DA), reported herein, is significantly lower than previous reports using FIA-electrochemical detection. Furthermore, the SWNT electrodes can be used as grown, i.e., they do not require chemical modification or cleanup. The extremely low background signals of the SWNT electrodes, as a consequence of the sparse surface coverage and the low intrinsic capacitance of the SWNTs, means that no signal processing is required to measure the low currents for DA oxidation at trace levels. DA detection in artificial cerebral fluid is also possible with a LOD of ∼50 pM in 50 µL (∼2.5 fmol).


Assuntos
Dopamina/análise , Técnicas Eletroquímicas , Nanotubos de Carbono/química , Eletrodos , Técnicas Analíticas Microfluídicas
7.
Am J Physiol Gastrointest Liver Physiol ; 303(3): G396-403, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22595991

RESUMO

Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.


Assuntos
Ácido Gástrico/metabolismo , Liberação de Histamina/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Estômago/fisiologia , Acetilcolina/farmacologia , Animais , Celulas Tipo Enterocromafim/metabolismo , Células Secretoras de Gastrina/metabolismo , Gastrinas , Cobaias , Histamina/farmacologia , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Células Parietais Gástricas/efeitos dos fármacos , Estômago/efeitos dos fármacos
8.
Phys Chem Chem Phys ; 13(12): 5403-12, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21350736

RESUMO

This paper describes the use of scanning electrochemical microscopy (SECM) in the tip generation/substrate collection (TG/SC), or feedback, mode and substrate generation/tip collection (SG/TC) mode to measure homogeneous kinetics in the catalytic EC' process. Theoretical analyses of both configurations have been developed numerically to allow the optimal conditions for sensitive kinetic measurements to be determined. This is shown to involve collection efficiency measurements as a function of tip-substrate electrode distance in the case of TG/SC measurements and tip (collector current) images in a plane normal to the substrate electrode for the SG/TC mode. An important consideration for the SECM configuration (particularly for TG/SC and feedback measurements) is that the electroinactive co-reactant may be depleted more significantly than with other electrode geometries, because of cycling of the redox couple in the tip/substrate electrode gap, while the co-reactant can only enter this gap by hindered diffusion. The approaches described are examined through studies of the oxidation of amidopyrine by electrogenerated Fe(CN) in 0.5 mol dm(-3) aqueous KOH solution. A second-order rate constant of 390 ± 80 dm(3) mol(-1) s(-1) is obtained from TG/SC measurements, consistent with SG/TC quantitative imaging measurements. The consistency of the kinetic measurements confirms the validity of the approaches described. The kinetic constant is lower than expected based on previous ultramicroelectrode (UME) studies, and this is attributed to the fact that background currents for the direct heterogeneous oxidation of amidopyrine are more significant with conventional UME measurements, which will tend to enhance the current measured and may therefore lead to an overestimation of kinetic constants. The TG/SC approach, on the other hand, provides a means of making dual-electrode collection efficiency measurements with diffusional feedback of the redox couple, leading to superior voltammetric responses and enabling more accurate kinetic determination.

9.
Analyst ; 135(3): 482-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20174699

RESUMO

The acid secretion mechanism can be studied by measuring a series of metabolic markers and neurotransmitters from in vitro isolated tissue. A microelectrode array was used to monitor proton concentration and histamine levels from isolated guinea pig stomach tissue. The device was partially modified using iridium oxide to form a series of pH sensors, whereas unmodified gold microelectrodes were used to measure the level of histamine in the gut. Real-time measurements in the presence of the H2-receptor antagonist ranitidine produced significant decreases in the overall Delta pH response, as expected. Also, a significant variation in the Delta pH response in between pH sensors was observed in the presence of pharmacological treatment due to structural features of the tissue. No significant differences in Delta i(H) were detected in the presence of ranitidine as expected. More significantly, clear variations in Delta pH responses between animals in control conditions and those in the presence of ranitidine was observed highlighting possible variation in parietal cell density and/or variations in tissue activity. These results identify great possibilities in applying these multi-sensing devices as a long-term stable personalised diagnostic tool for pharmacological screening and disease status.


Assuntos
Técnicas Biossensoriais/métodos , Mucosa Gástrica/metabolismo , Histamina/análise , Análise em Microsséries , Animais , Ácido Gástrico/metabolismo , Determinação da Acidez Gástrica , Ouro/química , Cobaias , Antagonistas dos Receptores H2 da Histamina/farmacologia , Liberação de Histamina , Concentração de Íons de Hidrogênio , Irídio/química , Masculino , Microeletrodos , Ranitidina/farmacologia , Receptores Histamínicos H2/química , Receptores Histamínicos H2/metabolismo
10.
Anal Chem ; 80(22): 8733-40, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18947199

RESUMO

Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.


Assuntos
Técnicas de Química Analítica/instrumentação , Mucosa Gástrica/metabolismo , Liberação de Histamina , Histamina/análise , Estômago/anatomia & histologia , Acetilcolina/farmacologia , Animais , Boro/química , Diamante/química , Ácido Gástrico/metabolismo , Determinação da Acidez Gástrica , Cobaias , Concentração de Íons de Hidrogênio , Irídio/química , Masculino , Microeletrodos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fatores de Tempo
11.
Anal Chem ; 78(5): 1435-43, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16503591

RESUMO

The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable.

12.
Anal Chem ; 77(19): 6205-17, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16194080

RESUMO

The application of fluorescence confocal laser scanning microscopy (CLSM) to quantify three-dimensional pH gradients near electrode surfaces is described. The methodology utilizes a trace quantity of a fluorescent dye, fluorescein, in solution, which fluoresces strongly above pH 6.5, to map the pH adjacent to various ultramicroelectrodes undergoing electrochemical processes that lead to pH changes. The experimental fluorescence profiles, determined by CLSM, have been compared to models by solving the underlying mass transport equations, including the effect of natural convection, using the finite element method. The methodology has been validated through studies of the galvanostatic reduction of water at both disk and ring ultramicroelectrodes. The fluorescence profiles were found to be highly sensitive to both the initial bulk solution pH and applied current in a predictable fashion. The potentiostatic reduction of oxygen has been investigated at 25- and 10-microm-diameter platinum electrodes to confirm the effective number of electrons transferred in the reaction. Finally, the application of this methodology to observe defects in microelectrode arrays, particularly those that cannot be seen by optical microscopy, is described.

13.
Anal Chem ; 76(17): 5172-9, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15373458

RESUMO

Electrospray ionization (ESI) is extensively used in the analysis of biological compounds; yet some fundamental properties of this technique are not completely understood. It is widely recognized that care should be exercised when noncovalent complexes are being studied by ESI, since weak noncovalent binding can be broken or formed during the desolvation process. In the present work, spectra from the noncovalent complex, vancomycin/diacetyl-L-lysyl-D-alanyl-D-alanine, obtained from ESI and from nanoelectrospray ionization (nanoESI), have been compared. The results indicated that the milder desolvation conditions arising as a result of the smaller sizes of droplets produced in the nanoESI source attenuated effects upon weak bonds in the desolvation process. The association constant values calculated from the relative peak intensities suggest that, when using ESI, the analyzed noncovalent complex dissociated in the condensed phase during the spraying process. The influences of experimental parameters such as tip diameter and coating for nanoESI needles were investigated. Principal component analysis, a multivariate analysis method, was applied to achieve a better evaluation of the spectra obtained using different needle diameters and coatings for the analysis of the noncovalent complex vancomycin/diacetyl-L-lysyl-D-alanyl-D-alanine. It was found that 2-microm tip diameter resulted in more reproducible spectra than the larger tip diameters tested (6-20 microm).


Assuntos
Ciclotrons , Nanotecnologia/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Fourier , Oligopeptídeos/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...