Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 224: 466-475, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28238574

RESUMO

Exposure to hypoxia has shown beneficial adjustments in different species, including silver catfish (Rhamdia quelen), especially in situations of aquatic contamination with pollutants such as manganese (Mn). Considering that hypoxia is seasonal in the natural aquatic environment, we decided to assess whether these adaptive mechanisms could be maintained when reoxygenation is established. Silver catfish acclimated to moderate hypoxia (∼3 mg L-1, 41% O2 saturation) for 10 days and subsequently exposed to Mn (∼8.1 mg L-1) for additional 10 days displayed lower (47%) Mn accumulation in the gills, and it was maintained (62.6%) after reoxygenation, in comparison to normoxia. Oxidative status in the gills allowed us to observe increased reactive species (RS) generation and protein carbonyl (PC) level together with decreased mitochondrial viability induced by Mn under normoxia. Inversely, while hypoxia per se was beneficial on RS generation and PC level, this acclimation was able to minimize Mn toxicity, as observed by the minor increase of RS generation and the minor reduction of mitochondrial viability, together with decreased PC level. Interestingly, after reoxygenation, part of the protective influences observed during hypoxia against Mn toxicity were maintained, as observed through a lower level of PC and higher mitochondrial viability in relation to the group exposed to Mn under normoxia. Only groups exposed to Mn under hypoxia showed increased activity of both catalase (CAT) and Na+/K+-ATPase in the gills, but, while CAT activity remained increased after reoxygenation, Na+/K+-ATPase activity was decreased by Mn, regardless of the oxygen level. Based on these outcomes, it is possible to propose that environment events of moderate hypoxia are able to generate rearrangements in the gills of silver catfish exposed to Mn, whose influence persists after water reoxygenation. These responses may be related to the adaptive development, reducing Mn toxicity to silver catfish. Moderate hypoxia generates rearrangements in the gills of Silver catfish, exerting beneficial and persistent protection against Mn toxicity.


Assuntos
Aclimatação/fisiologia , Peixes-Gato/metabolismo , Hipóxia/metabolismo , Manganês/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Brânquias/enzimologia , Brânquias/metabolismo , Brânquias/patologia , Hipóxia/fisiopatologia , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27645230

RESUMO

This study investigated if hypoxia acclimation modifies the hematological and oxidative profiles in tissues of Mn-exposed silver catfish (Rhamdia quelen), and if such modifications persist upon subsequent reoxygenation. Silver catfish acclimated to hypoxia (~3mgL-1) for 10days and subsequently exposed to Mn (~8.1mgL-1) for additional 10days exhibited lower Mn accumulation in plasma, liver and kidney, even after reoxygenation, as compared to normoxia-acclimated fish. Hypoxia acclimation increased per se red blood cells count and hematocrit, suggesting adaptations under hypoxia, while the reoxygenation process was also related to increased hematocrit and hemoglobin per se. Fish exposed to Mn under normoxia for 20days showed decreased red blood cells count and hematocrit, while reoxygenation subsequent to hypoxia increased red blood cells count. Hypoxia acclimation also prevented Mn-induced oxidative damage, observed by increased reactive species generation and higher protein carbonyl levels in both liver and kidney under normoxia. Mn-exposed fish under hypoxia and after reoxygenation showed decreased plasma transaminases in relation to the normoxia group. Moreover, acclimation to hypoxia increased reduced glutathione levels, catalase activity and Na+/K+-ATPase activity in liver and kidney during Mn exposure, remaining increased even after reoxygenation. These findings show that previous acclimation to hypoxia generates physiological adjustments, which drive coordinated responses that ameliorate the antioxidant status even after reoxygenation. Such responses represent a physiological regulation of this teleost fish against oxygen restriction and/or Mn toxicity in order to preserve the stability of a particular tissue or system.


Assuntos
Aclimatação , Peixes-Gato/metabolismo , Hipóxia/metabolismo , Sulfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/sangue , Catalase/metabolismo , Peixes-Gato/sangue , Citoproteção , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Proteínas de Peixes/metabolismo , Glutationa/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Compostos de Manganês , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...