Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(2): 1088-1092, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29290120

RESUMO

Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells.

2.
Nanotechnology ; 21(43): 435202, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20890021

RESUMO

In this work we investigate doping by solid-state diffusion from a doped oxide layer, obtained by plasma-enhanced chemical vapor deposition (PECVD), as a means for selectively doping silicon nanowires (NWs). We demonstrate both n-type (phosphorous) and p-type (boron) doping up to concentrations of 10(20) cm(-3), and find that this doping mechanism is more efficient for NWs as opposed to planar substrates. We observe no diameter dependence in the range of 25 to 80 nm, which signifies that the NWs are uniformly doped. The drive-in temperature (800-950 °C) can be used to adjust the actual doping concentration in the range 2 × 10(18) to 10(20) cm(-3). Furthermore, we have fabricated NMOS and PMOS devices to show the versatility of this approach and the possibility of achieving segmented doping of NWs. The devices show high I(on)/I(off) ratios of around 10(7) and, especially for the PMOS, good saturation behavior and low hysteresis.

3.
Nano Lett ; 6(3): 403-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16522031

RESUMO

We present the growth of homogeneous InAs(1-x)P(x) nanowires as well as InAs(1-x)P(x) heterostructure segments in InAs nanowires with P concentrations varying from 22% to 100%. The incorporation of P has been studied as a function of TBP/TBAs ratio, temperature, and diameter of the wires. The crystal structure of the InAs as well as the InAs(1-x)P(x) segments were found to be wurtzite as determined from high-resolution transmission electron microscopy. Furthermore, temperature-dependent electrical transport measurements were performed on individual heterostructured wires to extract the conduction band offset of InAs(1-x)P(x) relative to InAs as a function of composition. From these measurements we extract a value of the linear coefficient of the conduction band versus x of 0.6 eV and a nonlinear coefficient, or bowing parameter, of 0.2 eV. Finally, homogeneous InAs(0.8)P(0.2) nanowires were shown to have a nondegenerate n-type doping and function as field-effect transistors at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...