Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 146: 106240, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186814

RESUMO

Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Animais , Cerebelo , Poluentes Ambientais/toxicidade , Feminino , Humanos , Camundongos , Neurônios , Estresse Oxidativo , Ratos
2.
Toxicology ; 445: 152610, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027616

RESUMO

Perfluoroalkyl acids (PFAAs) are persistent man-made chemicals, ubiquitous in nature and present in human samples. Although restrictions are being introduced, they are still used in industrial processes as well as in consumer products. PFAAs cross the blood-brain-barrier and have been observed to induce adverse neurobehavioural effects in humans and animals as well as adverse effects in neuronal in vitro studies. The sulfonated PFAA perfluorooctane sulfonic acid (PFOS), has been shown to induce excitotoxicity via the N-methyl-D-aspartate receptor (NMDA-R) in cultures of rat cerebellar granule neurons (CGNs). In the present study the aim was to further characterise PFOS-induced toxicity (1-60 µM) in rat CGNs, by examining interactions between PFOS and elements of glutamatergic signalling and excitotoxicity. Effects of the carboxylated PFAA, perfluorooctanoic acid (PFOA, 300-500 µM) on the same endpoints were also examined. During experiments in immature cultures at days in vitro (DIV) 8, PFOS increased both the potency and efficacy of glutamate, whereas in mature cultures at DIV 14 only increased potency was observed. PFOA also increased potency at DIV 14. PFOS-enhanced glutamate toxicity was further antagonised by the competitive NMDA-R antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) at DIV 8. At DIV 8, PFOS also induced glutamate release (9-13 fold increase vs DMSO control) after 1-3 and 24 h exposure, whereas for PFOA a large (80 fold) increase was observed, but only after 24 h. PFOS and PFOA both also increased alanine and decreased serine levels after 24 h exposure. In conclusion, our results indicate that PFOS at concentrations relevant in an occupational setting, may be inducing excitotoxicity, and potentiation of glutamate signalling, via an allosteric action on the NMDA-R or by actions on other elements regulating glutamate release or NMDA-R function. Our results further support our previous findings that PFOS and PFOA at equipotent concentrations induce toxicity via different mechanisms of action.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Cerebelo/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluorocarbonos/toxicidade , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Ácidos Alcanossulfônicos/administração & dosagem , Animais , Caprilatos/administração & dosagem , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Fluorocarbonos/administração & dosagem , Ácido Glutâmico/administração & dosagem , Masculino , Neurônios/patologia , Ratos , Ratos Wistar
3.
Toxicol Appl Pharmacol ; 357: 19-32, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30144469

RESUMO

Perfluoroalkyl acids (PFAAs) are persistent compounds used in many industrial as well as consumer products. Despite restrictions, these compounds are found at measurable concentrations in samples of human and animal origin. In the present study we examined whether the effects on cell viability of two sulfonated and four carboxylated PFAAs in cultures of cerebellar granule neurons (CGNs), could be associated with deleterious activation of the N-methyl-d-aspartate receptor (NMDA-R). PFAA-induced effects on viability in rat CGNs and unstimulated PC12 cells were examined using the MTT assay. Cells from the PC12 rat pheochromocytoma cell line lack the expression of functional NMDA-Rs and were used to verify lower toxicity of perfluorooctanesulfonic acid (PFOS) in cells not expressing NMDA-Rs. Protective effects of NMDA-R antagonists, and extracellular as well as intracellular Ca2+ chelators were investigated. Cytosolic Ca2+ ([Ca2+]i) was measured using Fura-2. In rat CGNs the effects of the NMDA-R antagonists MK-801, memantine and CPP indicated involvement of the NMDA-R in the decreased viability induced by PFOS and perfluorohexanesulfonic acid (PFHxS). No effects were associated with the four carboxylated PFAAs studied. Further, EGTA and CPP protected against PFOS-induced decreases in cell viability, whereas no protection was afforded by BAPTA-AM. [Ca2+]i significantly increased after exposure to PFOS, and this increase was completely blocked by MK-801. In PC12 cells a higher concentration of PFOS was required to induce equivalent levels of toxicity as compared to in rat CGNs. PFOS-induced toxicity in PC12 cells was not affected by CPP. In conclusion, PFOS at the tested concentrations induces excitotoxicity in rat CGNs, which likely involves influx of extracellular Ca2+ via the NMDA-R. This effect can be blocked by specific NMDA-R antagonists.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cálcio/metabolismo , Cerebelo/citologia , Fluorocarbonos/toxicidade , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Caprilatos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células PC12 , Ratos , Receptores Ionotrópicos de Glutamato
4.
Food Chem Toxicol ; 112: 86-96, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29258957

RESUMO

Both autoimmune disease prevalence and exposure to immunotoxic chemicals have increased the last decades. As a first screening of immunotoxic chemicals possibly affecting development of autoimmunity through attenuated macrophage function, we demonstrate a promising model measuring macrophage function in isolated peritoneal macrophages (PCM) from Wistar rats and C57Bl/6 mice. Immunotoxic effects of bisphenol A (BPA) and a selection of perfluoroalkyl acids (PFAAs) were analysed in vitro assessing phagocytic function of macrophages from different sources. Phagocytosis was reduced in PCM of C57Bl/6 mice and Wistar rats after BPA and perfluoroundecanoic acid (PFUnDA) exposure, but not in macrophages derived from human and rat monocyte derived macrophages (MDM). On the other hand, in vitro exposure to mixtures of persistent organic pollutants (POPs) showed similar reductions in rat PCM and rat and human MDM phagocytosis. Reduced phagocytosis was partly due to cytotoxicity. PCM isolated from non-obese diabetic (NOD) mice, interleukin 1α/ß knockout (IL-1KO) mice and new-born rats were less sensitive to the xenobiotics than PCM from adult wild type rodents. Finally, in vivo studies with NOD mice verified that POP exposure also decreased the number of pancreatic macrophages in pancreatic islets, reflecting early signs of autoimmunity development, similarly as previously described for BPA.


Assuntos
Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Xenobióticos/toxicidade , Animais , Animais Recém-Nascidos , Compostos Benzidrílicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Poluentes Ambientais/toxicidade , Ácidos Graxos/toxicidade , Feminino , Fluorocarbonos/toxicidade , Humanos , Interleucina-1/genética , Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Fenóis/toxicidade , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
5.
Neurotoxicology ; 63: 70-83, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919516

RESUMO

The toxicity of long chained perfluoroalkyl acids (PFAAs) has previously been reported to be related to the length of the perfluorinated carbon chain and functional group attached. In the present study, we compared the cytotoxicity of six PFAAs, using primary cultures of rat cerebellar granule neurons (CGNs). Two perfluoroalkyl sulfonic acids (PFSAs, chain length C6 and C8) and four perfluoroalkyl carboxylic acids (PFCAs, chain length C8-C11) were studied. These PFAAs have been detected in human blood and the brain tissue of mammals. The cell viability trypan blue and MTT assays were used to determine toxicity potencies (based on LC50 values) after 24h exposure (in descending order): perfluoroundecanoic acid (PFUnDA)≥perfluorodecanoic acid (PFDA)>perfluorooctanesulfonic acid potassium salt (PFOS)>perfluorononanoic acid (PFNA)>perfluorooctanoic acid (PFOA)>perfluorohexanesulfonic acid potassium salt (PFHxS). Concentrations of the six PFAAs that produced equipotent effects after 24h exposure were used to further explore the dynamics of viability changes during this period. Therefore viability was assessed at 10, 30, 60, 90, 120 and 180min as well as 6, 12, 18 and 24h. A difference in the onset of reduction in viability was observed, occurring relatively quickly (30-60min) for PFOS, PFDA and PFUnDA, and much slower (12-24h) for PFHxS, PFOA and PFNA. A slight protective effect of vitamin E against PFOA, PFNA and PFOS-induced reduction in viability indicated a possible involvement of oxidative stress. PFOA and PFOS did not induce lipid peroxidation on their own, but significantly accelerated cumene hydroperoxide-induced lipid peroxidation. When distribution of the six PFAAs in the CGN-membrane was investigated using NanoSIMS50 imaging, two distinct patterns appeared. Whereas PFHxS, PFOS and PFUnDA aggregated in large hotspots, PFOA, PFNA and PFDA showed a more dispersed distribution pattern. In conclusion, the toxicity of the investigated PFAAs increased with increasing carbon chain length. For molecules with a similar chain length, a sulfonate functional group led to greater toxicity than a carboxyl group.


Assuntos
Cerebelo/citologia , Citotoxinas/toxicidade , Fluorocarbonos/farmacologia , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citotoxinas/química , Relação Dose-Resposta a Droga , Feminino , Fluorocarbonos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Microscopia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...