Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(8): 4952-4959, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35833664

RESUMO

We combine molecular dynamics simulations with experiments to estimate solubilities of an organic salt in complex growth environments. We predict the solubility by simulations of the growth and dissolution of ions at the crystal surface kink sites at different solution concentrations. Thereby, the solubility is identified as the solution's salt concentration, where the energy of the ion pair dissolved in solution equals the energy of the ion pair crystallized at the kink sites. The simulation methodology is demonstrated for the case of anhydrous sodium acetate crystallized from various solvent-antisolvent mixtures. To validate the predicted solubilities, we have measured the solubilities of sodium acetate in-house, using an experimental setup and measurement protocol that guarantees moisture-free conditions, which is key for a hygroscopic compound like sodium acetate. We observe excellent agreement between the experimental and the computationally evaluated solubilities for sodium acetate in different solvent-antisolvent mixtures. Given the agreement and the rich data the simulations produce, we can use them to complement experimental tasks, which in turn will reduce time and capital in the design of complicated industrial crystallization processes of organic salts.


Assuntos
Simulação de Dinâmica Molecular , Sais , Íons , Acetato de Sódio , Solubilidade , Solventes/química
2.
Faraday Discuss ; 192: 153-179, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27509258

RESUMO

We investigate the potential of a class of recently discovered metal-organic-framework materials for their use in temperature swing adsorption (TSA) processes for CO2 capture; the particularity of the considered materials is their reversible and temperature dependent step-shaped CO2 adsorption isotherm. Specifically, we present a comprehensive modeling study, where the performance of five different materials with step-shaped isotherms [McDonald et al., Nature, 2015, 519, 303] in a four step TSA cycle is assessed. The specific energy requirement of the TSA process operated with these materials is lower than for a commercial 13X zeolite, and a smaller temperature swing is required to reach similar levels of CO2 purity and recovery. The effect of a step in the adsorption isotherm is illustrated and discussed, and design criteria that lead to an optimal and robust operation of the considered TSA cycle are identified. The presented criteria could guide material scientists in designing novel materials whose step position is tailored to specific CO2 separation tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...