Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857303

RESUMO

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Assuntos
Anormalidades Múltiplas , Condrócitos , Modelos Animais de Doenças , Face , Doenças Hematológicas , Histona Desmetilases , Doenças Vestibulares , Animais , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Camundongos , Face/anormalidades , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Condrócitos/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Humanos , Camundongos Knockout , Fenótipo , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide
2.
Genome Res ; 34(5): 696-710, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38702196

RESUMO

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.


Assuntos
Anormalidades Múltiplas , Envelhecimento , Cromatina , Ilhas de CpG , Face , Doenças Hematológicas , Neurônios , Doenças Vestibulares , Animais , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Camundongos , Face/anormalidades , Cromatina/metabolismo , Cromatina/genética , Doenças Vestibulares/genética , Neurônios/metabolismo , Envelhecimento/genética , Anormalidades Múltiplas/genética , Modelos Animais de Doenças , Epigênese Genética , Linfócitos T/metabolismo , Linfócitos B/metabolismo
3.
Front Immunol ; 15: 1341745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765012

RESUMO

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Integrinas , Proteína de Leucina Linfoide-Mieloide , Linfócitos T , Animais , Humanos , Camundongos , Anormalidades Múltiplas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Regulação da Expressão Gênica/genética , Doenças Hematológicas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Integrinas/metabolismo , Integrinas/genética , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doenças Vestibulares/genética , Doenças Vestibulares/imunologia , Doenças Vestibulares/metabolismo
4.
Arch Clin Neuropsychol ; 39(2): 186-195, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-37565480

RESUMO

OBJECTIVES: Wiedemann-Steiner syndrome (WSS) is a neurogenetic disorder caused by heterozygous variants in KMT2A. Recent investigations suggest increased anxiety and behavior regulation challenges among those with WSS although the neurobehavioral phenotype remains largely unknown. This study aims to examine the pattern of and associations between executive functioning (EF) and behavior functioning among those with WSS. METHOD: This study involved utilizing caregiver-report inventories (Behavior Rating Inventory of Executive Function 2nd Edition, BRIEF-2; Adaptive Behavior Assessment 3rd Edition, ABAS-3; Strengths and Difficulties Questionnaire, SDQ) to assess day-to-day behavior functioning among those with WSS (N = 24; mean age = 10.68 years, SD = 3.19). Frequency of clinical elevations in daily difficulties in EF, adaptive behaviors, and behavior regulation were reported. Correlations and hierarchical linear regressions were used to determine the relationships between EF with behavior and adaptive functioning. RESULTS: Out of our sample, 63% met clinical levels of executive functioning difficulties on the BRIEF-2, and 75% with Hyperactivity and 54% with Emotional Problems on the SDQ. In addition, 33% were rated >2 SD below the normative mean in overall adaptive functioning on the ABAS-3. Elevated ratings in BRIEF-2 Shift, reflective of challenges with mental flexibility, predicted more Emotional Problems and accounted for 33.5% of its variance. More difficulties in Emotional Control were related to greater adaptive deficits, accounting for 33.3% of its variance. CONCLUSIONS: Those with WSS are at risk for EF deficits, hyperactivity, and emotional dysregulation. EF correlates with adaptive and affective behaviors, highlighting the promise of behavioral interventions to target cognitive flexibility, emotional awareness, and reactivity in this population.


Assuntos
Disfunção Cognitiva , Função Executiva , Humanos , Criança , Função Executiva/fisiologia , Testes Neuropsicológicos , Adaptação Psicológica
5.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38015625

RESUMO

Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.


Assuntos
Fibroblastos , Osteogênese , Animais , Camundongos , Osteogênese/fisiologia , Fibroblastos/metabolismo , Complexo Repressor Polycomb 2 , Modelos Animais de Doenças , Histona Desmetilases
6.
Eur J Hum Genet ; 32(1): 44-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684520

RESUMO

Marfan syndrome (MFS) is an autosomal dominant condition characterized by aortic aneurysm, skeletal abnormalities, and lens dislocation, and is caused by variants in the FBN1 gene. To explore causes of MFS and the prevalence of the disease in Iceland we collected information from all living individuals with a clinical diagnosis of MFS in Iceland (n = 32) and performed whole-genome sequencing of those who did not have a confirmed genetic diagnosis (27/32). Moreover, to assess a potential underdiagnosis of MFS in Iceland we attempted a genotype-based approach to identify individuals with MFS. We interrogated deCODE genetics' database of 35,712 whole-genome sequenced individuals to search for rare sequence variants in FBN1. Overall, we identified 15 pathogenic or likely pathogenic variants in FBN1 in 44 individuals, only 22 of whom were previously diagnosed with MFS. The most common of these variants, NM_000138.4:c.8038 C > T p.(Arg2680Cys), is present in a multi-generational pedigree, and was found to stem from a single forefather born around 1840. The p.(Arg2680Cys) variant associates with a form of MFS that seems to have an enrichment of abdominal aortic aneurysm, suggesting that this may be a particularly common feature of p.(Arg2680Cys)-associated MFS. Based on these combined genetic and clinical data, we show that MFS prevalence in Iceland could be as high as 1/6,600 in Iceland, compared to 1/10,000 based on clinical diagnosis alone, which indicates underdiagnosis of this actionable genetic disorder.


Assuntos
Síndrome de Marfan , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiologia , Síndrome de Marfan/genética , Islândia/epidemiologia , Fibrilina-1/genética , Genótipo , Linhagem , Mutação , Adipocinas/genética
7.
Clin Epigenetics ; 15(1): 172, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884963

RESUMO

BACKGROUND: Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/ßGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/ßGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS: Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS: We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS: As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.


Assuntos
Metilação de DNA , Inibidores de Histona Desacetilases , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neuroanatomia , Biomarcadores
8.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577516

RESUMO

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell-types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility abnormalities in neurons are mostly distinct from those in B or T cells. This is not because the neuronal abnormalities occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that the regions disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators, and suggest that blood-derived "episignatures" may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.

9.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425751

RESUMO

Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.

10.
Am J Med Genet A ; 191(10): 2591-2601, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37470210

RESUMO

The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Criança , Adulto , Humanos , Adolescente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/complicações , Fenótipo
11.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333301

RESUMO

Organisms have homeostatic mechanisms to respond to cold temperature to ensure survival including the activation of the mammalian neuroprotective mild hypothermia response (MHR) at 32°C. We show activation of the MHR at euthermia by an FDA-approved medication Entacapone, proof-of-principle that the MHR can be medically manipulated. Utilizing a forward CRISPR-Cas9 mutagenesis screen, we identify the histone lysine methyltransferase SMYD5 as an epigenetic gatekeeper of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia but not at 32°C. This repression is mirrored by temperature-dependent levels of H3K36me3 at the SP1-locus and globally indicating that the mammalian MHR is regulated at the level of histone modifications. We identified 45 additional SMYD5-temperature dependent genes suggesting a broader MHR-related role for SMYD5. Our study provides an example of how the epigenetic machinery integrates environmental cues into the genetic circuitry of mammalian cells and suggests novel therapeutic avenues for neuroprotection after catastrophic events.

12.
Hum Genet ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952035

RESUMO

The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.

13.
JIMD Rep ; 64(1): 65-70, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36636586

RESUMO

Several mitochondrial diseases are caused by pathogenic variants that impair membrane phospholipid remodeling, with no FDA-approved therapies. Elamipretide targets the inner mitochondrial membrane where it binds to cardiolipin, resulting in improved membrane stability, cellular respiration, and ATP production. In clinical trials, elamipretide produced clinical and functional improvements in adults and adolescents with mitochondrial disorders, such as primary mitochondrial myopathy and Barth syndrome; however, experience in younger patients is limited and to our knowledge, these are the first case reports on the safety and efficacy of elamipretide treatment in children under 12 years of age. We describe the use of elamipretide in patients with mitochondrial disorders to provide dosing parameters in patients aged <12 years.

14.
Am J Med Genet A ; 191(2): 437-444, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373844

RESUMO

This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Anormalidades Múltiplas/genética , Ansiedade
15.
J Int Neuropsychol Soc ; 29(5): 512-518, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36062544

RESUMO

OBJECTIVES: Wiedemann-Steiner syndrome (WSS) is a rare Mendelian disorder of the epigenetic machinery caused by heterozygous pathogenic variants in KMT2A. Currently, the specific neurocognitive profile of this syndrome remains unknown. This case series provides insight into the cognitive phenotype of WSS. METHODS: This study involves a retrospective medical chart review of 10 pediatric patients, each with a molecularly confirmed diagnosis of WSS who underwent clinical neuropsychological evaluation at an academic medical center. RESULTS: The majority of patients performed in the below average to very low ranges in Nonverbal Reasoning, Visual/Spatial Perception, Visuoconstruction, Visual Memory, Attention, Working Memory and Math Computation skills. In contrast, over half the sample performed within normal limits on Receptive Vocabulary, Verbal Memory, and Word Reading. Wilcoxon signed rank test showed weaker Nonverbal versus Verbal Reasoning skills (p = .005). Most caregivers reported deficits in executive functioning, most notably in emotion regulation. CONCLUSIONS: Nonverbal reasoning/memory, visuospatial/construction, attention, working memory, executive functioning, and math computation skills are areas of weakness among those with WSS. These findings overlap with research on Kabuki syndrome, which is caused by variants in KMT2D, and suggest disruption in the neurogenesis of the hippocampal formation may drive shared pathogenesis of the two syndromes.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Anormalidades Múltiplas/genética , Memória de Curto Prazo , Testes Neuropsicológicos
16.
Genes (Basel) ; 15(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254937

RESUMO

Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.


Assuntos
Anormalidades Múltiplas , Síndrome CHARGE , Surdez , Face , Perda Auditiva Neurossensorial , Doenças Hematológicas , Doenças Vestibulares , Animais , Criança , Humanos , Camundongos , Causalidade , Face/anormalidades , Audição , Perda Auditiva Neurossensorial/genética
17.
Front Genet ; 13: 1007046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276984

RESUMO

Kabuki syndrome (KS) is a Mendelian Disorder of the Epigenetic Machinery (MDEM) caused by loss of function variants in either of two genes involved in the regulation of histone methylation, KMT2D (34-76%) or KDM6A (9-13%). Previously, representative neurobehavioral deficits of KS were recapitulated in a mouse model, emphasizing the role of KMT2D in brain development, specifically in ongoing hippocampal neurogenesis in the granule cell layer of the dentate gyrus. Interestingly, anxiety, a phenotype that has a known association with decreased hippocampal neurogenesis, has been anecdotally reported in individuals with KS. In this study, anxiety and behavior were assessed in a cohort of 60 individuals with molecularly confirmed KS and 25 unaffected biological siblings, via questionnaires (SCARED/GAS-ID and CBCL/ABCL). Participant age ranged from 4 to 43 years old, with 88.3% of participants having a pathogenic variant in KMT2D, and the rest having variants in KDM6A. In addition, data was collected on adaptive function and positive affect/quality of life in participants with KS using appropriate online surveys including ABAS-III and PROMIS Positive Affect. Survey scores were compared within the KS participants across age groups and between KS participants and their unaffected siblings. We found that children with KS have significantly higher anxiety scores and total behavior problem scores than their unaffected siblings (p = 0.0225, p < 0.0001). Moreover, a large proportion of affected individuals (22.2% of children and 60.0% of adults) surpassed the established threshold for anxiety; this may even be an underestimate given many patients are already treated for anxiety. In this sample, anxiety levels did not correlate with level of cognitive or adaptive function in any KS participants, but negatively correlated with positive affect in children with KS (p = 0.0005). These findings indicate that anxiety is a common neurobehavioral feature of KS. Providers should therefore carefully screen individuals with KS for anxiety as well as other behavioral issues in order to allow for prompt intervention. Neurobehavioral anxiety measures may also prove to be important outcome measures for clinical trials in KS.

18.
Front Genet ; 13: 950082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313433

RESUMO

Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder caused by mutation in KMT2A and characterized by neurodevelopmental delay. This study is the first prospective investigation to examine the sleep and behavioral phenotypes among those with WSS through parent-informant screening inventories. A total of 24 parents of children/adults with WSS (11F, Mean age = 12.71 years, SD = 8.17) completed the Strengths and Difficulties Questionnaire (SDQ) and 22 of these caregivers also completed the Modified Simonds and Parraga Sleep Questionnaire (MSPSQ). On average, the majority of those with WSS (83%) were rated to show borderline to clinical level of behavioral difficulties on the SDQ. Approximately 83% were rated in these ranges for hyperactivity, 63% for emotional problems, and 50% for conduct problems. When applying prior published clinical cut-off for risk of sleep disturbance among those with neurodevelopmental disorders, over 80% of our sample exceeded this limit on the MSPSQ. Largely, caregivers' ratings suggested restless sleep, rigid bedtime rituals, sleep reluctance and breathing through the mouth in sleep were most consistent problems observed. Partial correlations between sleep and behavioral domains showed elevated emotional problems were associated with parasomnia characteristics after controlling for age. Daytime drowsiness and activity were associated with more hyperactivity. Those with more night waking problems and delayed sleep onset were rated to show more severe conduct problems. Overall, these findings suggest dysfunctional sleep behaviors, hyperactivity, and affective problems are part of the neurobehavioral phenotype of WSS. Routine clinical care for those affected by WSS should include close monitoring of sleep and overactive behaviors.

19.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130591

RESUMO

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Assuntos
Metilação de DNA , Deficiência Intelectual , Anormalidades Múltiplas , Cromatina , Metilação de DNA/genética , Epigênese Genética , Face/anormalidades , Doenças Hematológicas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares
20.
Am J Med Genet A ; 188(10): 3041-3048, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930004

RESUMO

Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.


Assuntos
Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas , Adolescente , Adulto , Criança , Pré-Escolar , Face/anormalidades , Doenças Hematológicas/complicações , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Mutação , Qualidade de Vida , Sono , Doenças Vestibulares/complicações , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...