Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9357, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518261

RESUMO

Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.


Assuntos
Aminas/química , Gases em Plasma/química , Polímeros/química , Polímeros/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Propriedades de Superfície
2.
Nanotoxicology ; 12(4): 290-304, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29447049

RESUMO

Lead nanoparticles (NPs) are released into air from metal processing, road transport or combustion processes. Inhalation exposure is therefore very likely to occur. However, even though the effects of bulk lead are well known, there is limited knowledge regarding impact of Pb NPs inhalation. This study focused on acute and subchronic exposures to lead oxide nanoparticles (PbO NPs). Mice were exposed to PbO NPs in whole body inhalation chambers for 4-72 h in acute experiment (4.05 × 106 PbO NPs/cm3), and for 1-11 weeks in subchronic experiment (3.83 × 105 particles/cm3 in lower and 1.93 × 106 particles/cm3 in higher exposure group). Presence of NPs was confirmed in all studied organs, including brain, which is very important considering lead neurotoxicity. Lead concentration gradually increased in all tissues depending on the exposure concentration and duration. The most burdened organs were lung and kidney, however liver and brain also showed significant increase of lead concentration during exposure. Histological analysis documented numerous morphological alterations and tissue damage, mainly in lung, but also in liver. Mild pathological changes were observed also in kidney and brain. Levels of glutathione (reduced and oxidized) were modulated mainly in lung in both, acute and subchronic exposures. Increase of lipid peroxidation was observed in kidney after acute exposure. This study characterized impacts of short to longer-term inhalation exposure, proved transport of PbO NPs to secondary organs, documented time and concentration dependent gradual increase of Pb concentration and histopathological damage in tissues.


Assuntos
Exposição por Inalação/efeitos adversos , Chumbo/farmacocinética , Chumbo/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Óxidos/farmacocinética , Óxidos/toxicidade , Administração por Inalação , Animais , Encéfalo/efeitos dos fármacos , Glutationa/metabolismo , Rim/efeitos dos fármacos , Chumbo/administração & dosagem , Chumbo/química , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Nanopartículas/química , Óxidos/administração & dosagem , Óxidos/química , Distribuição Tecidual
3.
Toxicon ; 133: 48-57, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28428069

RESUMO

The beta-N-methylamino-l-alanine (BMAA) is a non-proteinogenic amino acid discussed to be produced by cyanobacteria forming harmful blooms. Since BMAA is suspected etiological agent in neurodegenerative diseases, there is a need to study and validate whether and in what concentrations can BMAA be present in human tissues. The aim of the present study was to validate analytical and extraction procedures for quantification of non-derivatized BMAA in the urine using liquid chromatography and commercial ELISA Kit. The study was focused on BMAA in different forms - dissolved, protein associated and total. The validated protocol included SPE followed by HILIC MS/MS for analyses of non-derivatized free form of BMAA with a limit of quantification 20 ng/mL. The methods for other BMAA forms (i.e. protein-associated and total) were also assessed but high matrix interferences did not allow their implementation. The method was used for analyses of free BMAA in 23 urine samples from healthy volunteers and psychiatric patients suffering from nonspecific neurological symptoms. Traces of BMAA were suspectedly detected in a single urine sample but they were not unequivocally proved according to all conservative analytical criteria. BMAA was also not confirmed in a repeatedly collected sample from the same person. The evaluated commercial BMAA ELISA Kit (Abraxis) was not suitable for determination of BMAA in extracted urine samples because of systematically highly false positive results. In agreement with recent findings, analyses of BMAA appear to methodologically challenging, and further research on BMAA in human tissues (or its precursors with potency to form BMAA under natural conditions or - eventually - during sample processing) is needed to clarify its potential ethiological role in neurodegenerative diseases.


Assuntos
Diamino Aminoácidos/urina , Transtornos Mentais/urina , Neurotoxinas/urina , Adulto , Idoso , Cromatografia Líquida/métodos , Toxinas de Cianobactérias , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos
4.
Environ Sci Pollut Res Int ; 23(23): 24047-24060, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27638805

RESUMO

Cadmium nanoparticles can represent a risk in both industrial and environmental settings, but there is little knowledge on the impacts of their inhalation, especially concerning longer-term exposures. In this study, mice were exposed to cadmium oxide (CdO) nanoparticles in whole body inhalation chambers for 4 to 72 h in acute and 1 to 13 weeks (24 h/day, 7 days/week) in chronic exposure to investigate the dynamics of nanoparticle uptake and effects. In the acute experiment, mice were exposed to 2.95 × 106 particles/cm3 (31.7 µg CdO/m3). The same concentration and a lower one (1.18 × 106 particles/cm3, 12.7 µg CdO/m3) were used for the chronic exposure. Transmission electron microscopy documented distribution of nanoparticles into all studied organs. Major portion of nanoparticles was retained in the lung, but longer exposure led to a greater relative redistribution into secondary organs, namely the kidney, and also the liver and spleen. Accumulation of Cd in the lung and liver occurred already after 24 h and in the brain, kidney, and spleen after 72 h of exposure, and a further increase of Cd levels was observed throughout the chronic exposure. There were significant differences in both Cd accumulation and effects between the two exposure doses. Lung weight in the higher exposure group increased up to 2-fold compared to the control. Histological analyses showed dose-dependent alterations in lung and liver morphology and damage to their tissue. Modulation of oxidative stress parameters including glutathione levels and increased lipid peroxidation occurred mainly after the greater chronic exposure. The results emphasize risk of longer-term inhalation of cadmium nanoparticles, since adverse effects occurring after shorter exposures gradually progressed with a longer exposure duration.


Assuntos
Compostos de Cádmio/toxicidade , Exposição por Inalação/efeitos adversos , Nanopartículas/toxicidade , Óxidos/toxicidade , Animais , Feminino , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo
5.
J Dairy Sci ; 99(9): 6973-6982, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27394955

RESUMO

Isoflavones are natural phytoestrogens with antioxidant and endocrine-disrupting potencies. Monitoring of their levels is important to ensure the high quality and safety of food, milk, and dairy products. The efficiency and accuracy of phytoestrogen analyses in complex matrices such as milk depend on the extraction procedure, which often uses hydrolysis by means of the ß-glucuronidase/sulfatase enzyme originating from Helix pomatia. The present study reveals that the commercially available hydrolytic enzyme is contaminated by several phytoestrogen isoflavones (genistein, daidzein, formononetin, and biochanin A) and their metabolite equol, as well as flavones (naringenin and apigenin) and coumestrol. We show that the concentrations of daidzein and genistein in the enzyme could have impaired the results of analyses of the main isoflavones in several previously published studies. Of 8 analyzed compounds, only equol was confirmed in the present study and it serves as a reliable marker of phytoestrogens originating from cow feed. Critical reassessment of phytoestrogen concentrations in milk is needed because several previously published studies might have overestimated the concentrations depending on the extraction procedure used.


Assuntos
Leite/química , Fitoestrógenos , Animais , Bovinos , Cumestrol , Feminino , Glucuronidase , Isoflavonas , Óvulo
6.
Anal Bioanal Chem ; 406(24): 5867-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069883

RESUMO

The paper presents the development of an advanced extraction and fast analytical LC MS/MS method for simultaneous analyses of reduced and oxidized glutathione (GSH and GSSG, respectively) in different animal tissues. The simultaneous determination of GSH and GSSG is crucial because the amount and ratio of both GSH and GSSG may be altered in response to oxidative stress, an important mechanism of toxicity. The method uses the derivatization of free thiol groups in GSH. Its performance was demonstrated for less explored tissues (lung, brain, and liver) in mouse. The combined extraction and analytical method has very low variability and good reproducibility, maximum coefficients of variance for within-run and between-run analyses under 8 %, and low limits of quantification; for GSH and GSSG, these were 0.2 nM (0.06 ng/mL) and 10 nM (6 ng/mL), respectively. The performance of the method was further demonstrated in a model experiment addressing changes in GSH and GSSG concentrations in lung of mice exposed to CdO nanoparticles during acute 72 h and chronic 13-week exposures. Inhalation exposure led to increased GSH concentrations in lung. GSSG levels were in general not affected; nonsignificant suppression occurred only after the longer 13-week period of exposure. The developed method for the sensitive detection of both GSH and GSSG in very low tissue mass enables these parameters to be studied in cases where only a little sample is available, i.e. in small organisms or in small amounts of tissue.


Assuntos
Cádmio/toxicidade , Cromatografia Líquida/métodos , Dissulfeto de Glutationa/análise , Glutationa/análise , Exposição por Inalação/análise , Fígado/química , Pulmão/química , Espectrometria de Massas/métodos , Animais , Cádmio/metabolismo , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/metabolismo , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...