Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Polym Au ; 4(2): 140-148, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618005

RESUMO

Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.

2.
Angew Chem Int Ed Engl ; 62(46): e202313502, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37792399

RESUMO

We perform the conversion of a commodity plastic of common use in pipes, window frames, medical devices, flexible hoses, etc. like polyvinyl chloride (PVC) to single-chain nanoparticles (SCNPs). SCNPs are versatile, protein-mimetic soft nano-objects of growing interest for catalysis, sensing, and nanomedicine, among other uses. We demonstrate that the metamorphosis process -as induced through metal-free click chemistry- leads to well-defined, uniform SCNPs that are stable during storage in the solid state for months. All the conversion process (from PVC isolation to PVC-SCNPs synthesis) can be run in a green, dipolar aprotic solvent and involving, when required, a simple mixture of ethanol and water (1/1 vol.) as non-solvent. The resulting PVC-SCNPs are investigated as recyclable, metalloenzyme-mimetic catalysts for several representative Cu(II)-catalyzed organic reactions. The method could be valid for the metamorphosis and valorization of other commodity plastics in which it is feasible to install azide functional groups in their linear polymer chains.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110979

RESUMO

We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide-alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, the presence of metal traces limits its use in a number of potential applications. To address these problems, we selected a bifunctional cross-linker molecule, sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD). DIBOD has two highly strained alkyne bonds that allow for the synthesis of metal-free SCNPs. We demonstrate the utility of this new approach by synthesizing metal-free polystyrene (PS)-SCNPs without significant aggregation issues during storage, as demonstrated by small-angle X-ray scattering (SAXS) experiments. Notably, this method paves the way for the synthesis of long-term-dispersible, metal-free SCNPs from potentially any polymer precursor decorated with azide functional groups.

4.
Polymers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477597

RESUMO

The folding of certain proteins (e.g., enzymes) into perfectly defined 3D conformations via multi-orthogonal interactions is critical to their function. Concerning synthetic polymers chains, the "folding" of individual polymer chains at high dilution via intra-chain interactions leads to so-called single-chain nanoparticles (SCNPs). This review article describes the advances carried out in recent years in the folding of single polymer chains into discrete SCNPs via multi-orthogonal interactions using different reactive chemical species where intra-chain bonding only occurs between groups of the same species. First, we summarize results from computer simulations of multi-orthogonally folded SCNPs. Next, we comprehensively review multi-orthogonally folded SCNPs synthesized via either non-covalent bonds or covalent interactions. Finally, we conclude by summarizing recent research about multi-orthogonally folded SCNPs prepared through both reversible (dynamic) and permanent bonds.

5.
Polymers (Basel) ; 11(11)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752235

RESUMO

Clean use of photons from light to activate chemical reactions offers many possibilities in different fields, from chemistry and biology to materials science and medicine. This review article describes the advances carried out in last decades toward the phototriggered synthesis of single-chain polymer nanoparticles (SCNPs) as soft nanomaterials with promising applications in enzyme-mimicking catalysis and nanomedicine, among other different uses. First, we summarize some different strategies developed to synthesize SCNPs based on photoactivated intrachain homocoupling, phototriggered intrachain heterocoupling and photogenerated collapse induced by an external cross-linker. Next, we comprehensively review the emergent topic of photoactivated multifolding applied to SCNP construction. Finally, we conclude by summarizing recent strategies towards phototriggered disassembly of SCNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...