Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 99(6): 1043-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22645096

RESUMO

PREMISE OF THE STUDY: Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. METHODS: The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. KEY RESULTS: Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. CONCLUSIONS: Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.


Assuntos
Asteraceae/genética , Evolução Molecular , Hibridização Genética , Poliploidia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/classificação , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genoma de Planta/genética , Geografia , Hibridização in Situ Fluorescente , Cariótipo , México , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Análise de Sequência de DNA , Especificidade da Espécie , Texas
2.
Evolution ; 66(1): 211-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22220876

RESUMO

Polyploidy, an important factor in eukaryotic evolution, is especially abundant in angiosperms, where it often acts in concert with hybridization to produce allopolyploids. The application of molecular phylogenetic techniques has identified the origins of numerous allopolyploids, but little is known on genomic and chromosomal consequences of allopolyploidization, despite their important role in conferring divergence of allopolyploids from their parental species. Here, using several plastid and nuclear sequence markers, we clarify the origin of tetra- and hexaploids in a group of American daisies, allowing characterization of genome dynamics in polyploids compared to their diploid ancestors. All polyploid species are allopolyploids. Among the four diploid gene pools, the propensity for allopolyploidization is unevenly distributed phylogenetically with a few species apparently more prone to participate, but the underlying causes remain unclear. Polyploid genomes are characterized by differential loss of ribosomal DNA loci (5S and 35S rDNA), known hotspots of chromosomal evolution, but show genome size additivity, suggesting limited changes beyond those affecting rDNA loci or the presence of processes counterbalancing genome reduction. Patterns of rDNA sequence conversion and provenance of the lost loci are highly idiosyncratic and differ even between allopolyploids of identical parentage, indicating that allopolyploids deriving from the same lower-ploid parental species can follow different evolutionary trajectories.


Assuntos
Asteraceae/genética , Especiação Genética , Genoma de Planta , Poliploidia , Evolução Biológica , DNA Ribossômico/genética
3.
Mol Phylogenet Evol ; 53(1): 220-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19272456

RESUMO

Chromosome evolution (including polyploidy, dysploidy, and structural changes) as well as hybridization and introgression are recognized as important aspects in plant speciation. A suitable group for investigating the evolutionary role of chromosome number changes and reticulation is the medium-sized genus Melampodium (Millerieae, Asteraceae), which contains several chromosome base numbers (x=9, 10, 11, 12, 14) and a number of polyploid species, including putative allopolyploids. A molecular phylogenetic analysis employing both nuclear (ITS) and plastid (matK) DNA sequences, and including all species of the genus, suggests that chromosome base numbers are predictive of evolutionary lineages within Melampodium. Dysploidy, therefore, has clearly been important during evolution of the group. Reticulate evolution is evident with allopolyploids, which prevail over autopolyploids and several of which are confirmed here for the first time, and also (but less often) on the diploid level. Within sect. Melampodium, the complex pattern of bifurcating phylogenetic structure among diploid taxa overlain by reticulate relationships from allopolyploids has non-trivial implications for intrasectional classification.


Assuntos
Asteraceae/genética , Cromossomos de Plantas/genética , Evolução Molecular , Filogenia , Asteraceae/classificação , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Plastídeos/genética , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...