Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 10(3)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836702

RESUMO

Interspecific crossing is a promising approach for introgression of valuable traits to develop cultivars with improved characteristics. Allium fistulosum L. possesses numerous pest resistances that are lacking in the bulb onion (Allium cepa L.), including resistance to Stemphylium leaf blight (SLB). Advanced generations were produced by selfing and backcrossing to bulb onions of interspecific hybrids between A. cepa and A. fistulosum that showed resistance to SLB. Molecular classification of the cytoplasm established that all generations possessed normal (N) male-fertile cytoplasm of bulb onions. Genomic in situ hybridization (GISH) was used to study the chromosomal composition of the advanced generations and showed that most plants were allotetraploids possessing the complete diploid sets of both parental species. Because artificial doubling of chromosomes of the interspecific hybrids was not used, spontaneous polyploidization likely resulted from restitution gametes or somatic doubling. Recombinant chromosomes between A. cepa and A. fistulosum were identified, revealing that introgression of disease resistances to bulb onion should be possible.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença , Hibridização In Situ/métodos , Cebolas/microbiologia , Citoplasma , Introgressão Genética , Genômica , Cariótipo , Cebolas/genética , Melhoramento Vegetal , Saccharomycetales/patogenicidade , Tetraploidia
2.
Genome ; 48(4): 698-711, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16094437

RESUMO

Two linkage maps of pepper were constructed and used to identify quantitative trait loci (QTLs) conferring resistance to Phytophthora capsici. Inoculations were done with 7 isolates: 3 from Taiwan, 3 from California, and 1 from New Mexico. The first map was constructed from a set of recombinant inbred lines (RILs) of the PSP-11 (susceptible) x PI201234 (resistant) cross; and the second map was from a set of F(2) lines of the Joe E. Parker' (susceptible) x 'Criollo de Morelos 334' (resistant) cross. The RIL map covered 1466.1 cM of the pepper genome, and it consisted of 144 markers -- 91 amplified fragment length polymorphisms (AFLPs), 34 random amplified polymorphic DNA (RAPDs), 15 simple sequence repeats (SSRs), 1 sequence characterized amplified region (SCAR), and 3 morphological markers -- distributed over 17 linkage groups. The morphological markers mapped on this population were erect fruit habit (up), elongated fruit shape (fs(e)), and fasciculate fruit clusters (fa). The F(2) map consisted of 113 markers (51 AFLPs, 45 RAPDs, 14 SSRs, and 3 SCARs) distributed in 16 linkage groups, covering a total of 1089.2 cM of the pepper genome. Resistance to both root rot and foliar blight were evaluated in the RIL population using the 3 Taiwan isolates; the remaining isolates were used for the root-rot test only. Sixteen chromosomal regions of the RIL map contained single QTLs or clusters of resistance QTLs that had an effect on root rot and (or) foliar blight, revealing a complex set of genetics involved in resistance to P. capsici. Five QTLs were detected in the F(2) map that had an effect on resistance to root rot.


Assuntos
Capsicum/genética , Mapeamento Cromossômico/métodos , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Análise de Variância , Capsicum/microbiologia , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos/genética , Imunidade Inata/genética , Endogamia , Escore Lod , Fenótipo , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Especificidade da Espécie
3.
Transgenic Res ; 13(6): 567-81, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15672838

RESUMO

Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The Arabidopsis NPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Genes de Plantas , Imunidade Inata , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
4.
Pest Manag Sci ; 58(9): 951-8, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12233187

RESUMO

In recent years, late blight, caused by Phytophthora infestans (Mont) De Bary, has increased in severity in many parts of the world, and this has been associated with migrations which have introduced new, arguably more aggressive, populations of the pathogen. In Taiwan, late blight has been endemic on outdoor tomato crops grown in the highlands since the early 1900s, but recent epidemics have been more damaging. To ascertain the present status of the Taiwanese population of P infestans, 139 isolates of the pathogen collected and maintained by the Asian Vegetable Research and Development Center (AVRDC) were characterized using mating type, metalaxyl sensitivity, allozyme genotype, mitochondrial haplotype and RFLP fingerprinting. Up to 1997, all isolates were found to belong to the old clonal lineage of P infestans (US-1 and variants), but in isolates from 1998 a new genotype appeared, and by 2000 this had apparently completely displaced the old population. This new genotype was an A1 mating type and has the dilocus allozyme genotype 100/100/111, 100/100 for the loci coding for glucose-6-phosphate isomerase and peptidase, respectively. These characters, together with RG57 fingerprinting, indicated that these isolates belonged to the US-11 clonal lineage, a minority (11%) being a previously unreported variant of US-11. Whereas metalaxyl-resistant isolates were not detected in the old population, 96% of the new genotypes proved resistant, with the remainder being intermediate in sensitivity. It may be inferred from this sudden, marked change in the characteristics of the Taiwanese P infestans that a new population of the pathogen was introduced around 1997-98 and that this may well have already been metalaxyl-resistant when it arrived, although a role for in situ selection cannot be excluded.


Assuntos
Alanina/análogos & derivados , Alanina/farmacologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Alanina/toxicidade , DNA Mitocondrial/genética , Fungicidas Industriais/toxicidade , Haplótipos/genética , Isoenzimas/genética , Phytophthora/genética , Polimorfismo de Fragmento de Restrição , Dinâmica Populacional , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...