Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 67(3): 709-19, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17197120

RESUMO

PURPOSE: To compare the planning target volume (PTV) definitions for computed tomography (CT) vs. positron emission tomography (PET) in non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: A total of 21 patients with NSCLC underwent three-dimensional conformal radiotherapy planning. All underwent a staging F-18 fluorodeoxyglucose-position emission tomography (18FDG-PET) scan and underwent treatment simulation using CT plus a separate planning 18FDG-PET scan. Three sets of target volumes were defined: Set 1, CT volumes (CT tumor + staging PET nodal disease); Set 2, PET volumes (planning PET tumor {gross tumor volume (GTV) = [(0.3069 x mean standardized uptake value) + 0.5853])}; Set 3, composite CT-PET volumes (fused CT-PET tumor). Sets 1 and 2 were compared using a matching index. Three-dimensional conformal radiotherapy plans were created using the Set 1 (CT) volumes; and coverage of the Set 3 (composite) volumes was evaluated. Separate three-dimensional conformal radiotherapy plans were designed for the Set 3 volumes. RESULTS: For the primary tumor GTV, the Set 1 (CT) volume was larger than the Set 2 (PET) volume in 48%, smaller in 33%, and equal in 19%. The mean matching index was 0.65 (35% CT-PET mismatch). Although quantitatively similar, the volumes differed qualitatively. The Set 3 (composite) volume was larger than either CT or PET alone in 62%, smaller in 24%, and equal in 14%. The dose-volume histogram parameters did not differ among the plans for Set 1 (CT) vs. Set 3 (composite) volumes. Small portions of the Set 3 PTV were significantly underdosed in 40% of cases using the CT-only plan. CONCLUSION: Computed tomography and PET are complementary and should be obtained in the treatment position and fused to define the GTV for NSCLC. Although the quantitative absolute target volume is sometimes similar, the qualitative target locations can be substantially different, leading to underdosage of the target when planning is done using CT alone without PET fusion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Radioterapia Conformacional/métodos
2.
Int J Radiat Oncol Biol Phys ; 60(4): 1272-82, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15519800

RESUMO

PURPOSE: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. METHODS AND MATERIALS: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV = 1.85 approximately 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 muCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 muCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144 muCi/mL. Sphere images in each experiment were auto-contoured (simulating a GTV) using the threshold SUV that yielded a volume matching that of the known sphere volume. A regressive function was constructed to represent the relationship between the threshold SUV and the mean target SUV. This function was then applied to define the GTV of 15 NSCLC patients. The GTV volumes were compared to those determined by a fixed image intensity threshold proposed by other investigators. RESULTS: There was a strong linear relationship between the threshold SUV and the mean target SUV. The linear regressive function derived was: threshold SUV = 0.307 x (mean target SUV) + 0.588. The background concentration and target volume indirectly affect the threshold SUV by way of their influence on the mean target SUV. We applied the linear regressive function, as well as a fixed image intensity threshold (42% of maximum intensity) to the sphere phantoms and 15 patients with NSCLC. The results indicated that a much smaller deviation occurred when the threshold SUV regressive function was utilized to estimate the phantom volume as compared to the fixed image intensity threshold. The average absolute difference between the two methods was 21% with respect to the true phantom volume. The deviation became even more pronounced when applied to true patient GTV volumes, with a mean difference between the two methods of 67%. This was largely due to a greater degree of heterogeneity in the SUV of tumors over phantoms. CONCLUSIONS: An FDG-PET-based GTV can be systematically defined using a threshold SUV according to the regressive function described above. The threshold SUV for defining the target is strongly dependent on the mean target SUV of the target, and can be uniquely determined through the proposed iteration process.


Assuntos
Fluordesoxiglucose F18 , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Peso Corporal , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fluordesoxiglucose F18/farmacocinética , Modelos Lineares , Neoplasias Pulmonares/diagnóstico por imagem , Radiografia , Compostos Radiofarmacêuticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...