Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Crit Rev Clin Lab Sci ; 60(3): 189-211, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36593730

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T lymphocytes caused by human T lymphotropic virus type-1 (HTLV-1) infection. HTLV-1 was brought to the World Health Organization (WHO) and researchers to address its impact on global public health, oncogenicity, and deterioration of the host immune system toward autoimmunity. In a minority of the infected population (3-5%), it can induce inflammatory networks toward HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), or hijacking the infected CD4+ T lymphocytes into T regulatory subpopulation, stimulating anti-inflammatory signaling networks, and prompting ATLL development. This review critically discusses the complex signaling networks in ATLL pathogenesis during virus-host interactions for better interpretation of oncogenicity and introduces the main candidates in the pathogenesis of ATLL. At least two viral factors, HTLV-1 trans-activator protein (TAX) and HTLV-1 basic leucine zipper factor (HBZ), are implicated in ATLL manifestation, interacting with host responses and deregulating cell signaling in favor of infected cell survival and virus dissemination. Such molecules can be used as potential novel biomarkers for ATLL prognosis or targets for therapy. Moreover, the challenging aspects of HTLV-1 oncogenesis introduced in this review could open new venues for further studies on acute leukemia pathogenesis. These features can aid in the discovery of effective immunotherapies when reversing the gene expression profile toward appropriate immune responses gradually becomes attainable.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfoma , Paraparesia Espástica Tropical , Adulto , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Virulência , Paraparesia Espástica Tropical/patologia , Carcinogênese , Transformação Celular Neoplásica
2.
Nutrients ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34836358

RESUMO

The vitamin D status of the United Kingdom (UK) African-Caribbean (AC) population remains under-researched, despite an increased risk of vitamin D deficiency due to darker skin phenotypes and living at a high latitude. This cross-sectional study explored the vitamin D status and intake of AC individuals (n = 4046 with a valid serum 25(OH)D measurement) from the UK Biobank Cohort, aged ≥40 years at baseline (2006-2010). Over one third of the population were deficient (<25 nmol/L), 41.1% were insufficient (25-50 nmol/L) and 15.9% were sufficient (>50 nmol/L). Median (IQR) 25(OH)D was 30.0 (20.9) nmol/L. Logistic regression showed that brown/black skin phenotype, winter blood draw, not consuming oily fish and not using vitamin D supplements predicted increased odds of vitamin D deficiency, whilst older age and a summer or autumn blood draw were significantly associated with reduced odds of vitamin D deficiency. Vitamin D deficiency and insufficiency were prevalent in this AC population and is of considerable concern given the individual and societal implications of increased morbidity. Public health messaging for this group should focus on year-round vitamin D supplementation and increasing intakes of culturally appropriate vitamin D-rich foods. These data also support the urgent requirement for a revised vitamin D RNI for ethnic groups.


Assuntos
População Negra/estatística & dados numéricos , Estado Nutricional/etnologia , Deficiência de Vitamina D/etnologia , Vitamina D/análogos & derivados , Adulto , Idoso , Bancos de Espécimes Biológicos , População Negra/etnologia , Região do Caribe/etnologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estações do Ano , Pele/metabolismo , Reino Unido/epidemiologia , Vitamina D/sangue
3.
Cell Rep ; 35(5): 109056, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951431

RESUMO

Herpesvirus infections shape the human natural killer (NK) cell compartment. While Epstein-Barr virus (EBV) expands immature NKG2A+ NK cells, human cytomegalovirus (CMV) drives accumulation of adaptive NKG2C+ NK cells. Kaposi sarcoma-associated herpesvirus (KSHV) is a close relative of EBV, and both are associated with lymphomas, including primary effusion lymphoma (PEL), which nearly always harbors both viruses. In this study, KSHV dual infection of mice with reconstituted human immune system components leads to the accumulation of CD56-CD16+CD38+CXCR6+ NK cells. CD56-CD16+ NK cells were also more frequently found in KSHV-seropositive Kenyan children. This NK cell subset is poorly cytotoxic against otherwise-NK-cell-susceptible and antibody-opsonized targets. Accordingly, NK cell depletion does not significantly alter KSHV infection in humanized mice. These data suggest that KSHV might escape NK-cell-mediated immune control by driving CD56-CD16+ NK cell differentiation.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 8/patogenicidade , Células Matadoras Naturais/imunologia , Animais , Diferenciação Celular , Humanos , Camundongos
4.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328302

RESUMO

The CD200-CD200R pathway is involved in inhibition of immune responses, and the importance of this pathway to infectious disease is highlighted by the fact that viral CD200 (vCD200) molecules have been found to be encoded by several DNA viruses, including the human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), and the closely related rhesus macaque rhadinovirus (RRV). KSHV vCD200 is the most extensively studied vCD200 molecule, however, the only herpesvirus vCD200 molecule to be examined in vivo is that encoded by RRV. Our prior studies have demonstrated that RRV vCD200 is a functional CD200 homologue that is capable of affecting immune responses in vivo, and further, that RRV can express a secreted form of vCD200 (vCD200-Sec) during infection. Despite this information, RRV vCD200 has not been examined specifically for effects on RM CD200R signaling, and the functionality of vCD200-Sec has not been examined in any context. Thus, we developed an in vitro model system in which B cells expressing vCD200 were utilized to assess the effects of this molecule on the regulation of myeloid cells expressing RM CD200R, mimicking interactions that are predicted to occur in vivo Our findings suggest that RRV vCD200 can bind and induce functional signals through RM CD200R, while vCD200-Sec represents a non-functional protein incapable of affecting CD200R signaling. We also provide the first demonstration of the function of RM CD200, which appears to possess more robust signaling capabilities than RRV vCD200, and also show that KSHV vCD200 does not efficiently induce signaling via RM CD200R.IMPORTANCE Viral CD200 homologues are encoded by KSHV and the closely related RRV. Though RRV vCD200 has been examined, questions still exist in regard to the ability of this molecule to induce signaling via rhesus macaque CD200R, as well as the potential function of a secreted form of vCD200. Further, all previous in vitro studies of RRV vCD200 have utilized an Fc fusion protein to examine functionality, which does not replicate the structural properties of the membrane-associated form of vCD200 that is naturally produced during RRV infection. In this study, we demonstrate for the first time that membrane-expressed RRV vCD200 is capable of inducing signal transduction via RM CD200R, while the secreted form of vCD200 appears to be non-functional. Further, we also demonstrate that RM CD200 induces signaling via RM CD200R, and is more robust than RRV vCD200, while KSHV vCD200 does not appear to induce efficient signaling via RM CD200R.

5.
Br J Nutr ; 125(4): 448-459, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32693845

RESUMO

Little research has assessed serum 25-hydroxyvitamin D (25(OH)D) concentration and its predictors in Western-dwelling South Asians in a relatively large sample size. This observational, cross-sectional analysis assessed baseline prevalence of 25(OH)D deficiency in UK-dwelling South Asians (aged 40-69 years, 2006-2010) from the UK Biobank Cohort. Serum 25(OH)D measurements were undertaken using the DiaSorin Liaison XL assay. Of 6433 South Asians with a 25(OH)D measurement, using commonly used cut-off thresholds, 55 % (n 3538) had 25(OH)D < 25 nmol/l (severe deficiency) and 92 % (n 5918) had 25(OH)D < 50 nmol/l (insufficiency). Of the participants with a measurement, 20 % (n 1287) had 25(OH)D concentration <15 nmol/l (very severe deficiency). When 824 participants with undetectable (<10 nmol/l) 25(OH)D measurements were included (total n 7257), 29 % (n 2105) had 25(OH)D < 15 nmol/l, 60 % (n 4354) had 25(OH)D < 25 nmol/l and 93 % (n 6749) had 25(OH)D < 50 nmol/l. Logistic regression predictors of 25(OH)D < 25 nmol/l included the following characteristics: being male; Pakistani; higher BMI; 40-59 years old; never consuming oily fish; summer sun exposure <5 h/d, not using a vitamin D-containing supplement, measurement in winter or spring and vegetarianism. In terms of region, median 25(OH)D concentration was 19-20 nmol/l in Scotland, Northern England, the Midlands and Wales. Across Southern England and London, it was slightly higher at 24-25 nmol/l. Our analyses suggest the need for increased awareness of vitamin D deficiency in South Asians as well as urgent public health interventions to prevent and treat vitamin D deficiency in this group.


Assuntos
Povo Asiático , Deficiência de Vitamina D/etnologia , Deficiência de Vitamina D/epidemiologia , Vitamina D/análogos & derivados , Adulto , Idoso , Bancos de Espécimes Biológicos , Estudos de Coortes , Bases de Dados Factuais , Demografia , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estações do Ano , Reino Unido , Vitamina D/sangue
6.
Public Health Nutr ; 21(14): 2678-2688, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936916

RESUMO

OBJECTIVE: Vitamin D deficiency (serum 25-hydroxyvitamin D<25nmol/L) is extremely common in western-dwelling South Asians but evidence regarding vitamin D supplement usage in this group is very limited. This work identifies demographic, dietary and lifestyle predictors associated with vitamin D supplement use. DESIGN: Cross-sectional analysis of baseline vitamin D supplement use data. SETTING: UK Biobank cohort. SUBJECTS: In total, n 8024 South Asians (Bangladeshi, Indian, Pakistani), aged 40-69 years. RESULTS: Twenty-three % of men and 39% of women (P<0.001) [22% of Bangladeshis, 32% of Indians, 25% of Pakistanis (P<0.001)] took a vitamin D containing supplement. Median vitamin D intakes from diet were low at 1.0-3.0 micrograms per day, being highest in Bangladeshis and lowest in Indians (P<0.001). Logistic regression modelling showed that females had a higher odds of vitamin D supplement use than males (odds ratio (OR) = 2.02; 95% confidence interval (CI) 1.79 to 2.28). A lower supplement usage was seen in younger persons (40-60 years) (OR=0.75; 95% CI 0.65 to 0.86 reference= >60 years), and those living outside of Greater London (OR=0.53 to 0.77), with borderline trends for a lower body mass index, higher oily fish intake and higher household income associated with increased odds of vitamin D supplement use. CONCLUSIONS: Vitamin D supplements were not used by most South Asians and intakes from diet alone are likely to be insufficient to maintain adequate vitamin D status. Public health strategies are now urgently required to promote the use of vitamin D supplements in these specific UK South Asian subgroups.


Assuntos
Estilo de Vida , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/etnologia , Vitamina D/análogos & derivados , Adulto , Idoso , Ásia/etnologia , Bancos de Espécimes Biológicos , Estudos Transversais , Demografia , Ingestão de Energia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido , Vitamina D/administração & dosagem
7.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093086

RESUMO

Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of ß1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC.IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds upon our previous observations, which demonstrated that the MCPyV ST antigen enhances cell motility, providing a potential link between MCPyV protein expression and the highly metastatic nature of MCC. Here, we show that MCPyV ST remodels the actin cytoskeleton, promoting the formation of filopodia, which is essential for MCPyV ST-induced cell motility, and we also implicate the activity of specific Rho family GTPases, Cdc42 and RhoA, in these processes. Moreover, we describe a novel mechanism for the activation of Rho-GTPases and the cell motility pathway due to the interaction between MCPyV ST and the cellular phosphatase catalytic subunit PP4C, which leads to the specific dephosphorylation of ß1 integrin. These findings may therefore provide novel strategies for therapeutic intervention for disseminated MCC.


Assuntos
Antígenos Virais de Tumores/imunologia , Movimento Celular , Poliomavírus das Células de Merkel/fisiologia , Pseudópodes/metabolismo , Pseudópodes/virologia , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Antígenos Virais de Tumores/genética , Carcinoma de Célula de Merkel/virologia , Expressão Gênica , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Infecções por Polyomavirus/virologia , Ligação Proteica , Infecções Tumorais por Vírus/virologia
8.
Cell Host Microbe ; 22(1): 61-73.e7, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704654

RESUMO

The human tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) establish persistent infections in B cells. KSHV is linked to primary effusion lymphoma (PEL), and 90% of PELs also contain EBV. Studies on persistent KSHV infection in vivo and the role of EBV co-infection in PEL development have been hampered by the absence of small animal models. We developed mice reconstituted with human immune system components as a model for KSHV infection and find that EBV/KSHV dual infection enhanced KSHV persistence and tumorigenesis. Dual-infected cells displayed a plasma cell-like gene expression pattern similar to PELs. KSHV persisted in EBV-transformed B cells and was associated with lytic EBV gene expression, resulting in increased tumor formation. Evidence of elevated lytic EBV replication was also found in EBV/KSHV dually infected lymphoproliferative disorders in humans. Our data suggest that KSHV augments EBV-associated tumorigenesis via stimulation of lytic EBV replication.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/patogenicidade , Neoplasias/virologia , Animais , Linfócitos B/virologia , Linhagem Celular Tumoral , Citocinas/sangue , DNA Viral/análise , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Genes Virais/genética , Infecções por Herpesviridae/sangue , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Efusão Primária/etiologia , Linfoma de Efusão Primária/virologia , Camundongos , Baço/patologia , Baço/virologia , Taxa de Sobrevida , Replicação Viral
9.
Infect Agent Cancer ; 12: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344639

RESUMO

BACKGROUND: Aflatoxin B1 (AFB1) contamination of food is very high in most sub-Saharan African countries. AFB1 is known to cause hepatocellular carcinoma (HCC) by inducing mutation in the tumour suppressor gene TP53. The number of new HCC cases is high in West Africa with an accompanying high mortality. The type I interferon (IFN) pathway of the innate immune system limits viral infections and exerts its anti-cancer property by up-regulating tumour suppressor activities and pro-apoptotic pathways. Indeed, IFN-α is reported to show significant protective effects against hepatic fibrogenesis and carcinogenesis. However, the mechanism behind AFB1 deregulation of the type I interferon (IFN) signalling pathway, with consequent HCC is largely unknown. This current study seeks to test the hypothesis that AFB1 inhibits the type I IFN response by directly interfering with key signalling proteins and thus increase the risk of HCC in humans. METHODS: We evaluated the effects of AFB1 on the type I IFN signalling pathway using IFN stimulated response element (ISRE)-based luciferase reporter gene assay. In addition, the effects of AFB1 on the transcript levels of JAK1, STAT1 and OAS3 were assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and confirmed by immunoblot assay. RESULTS: Our results indicated that AFB1 inhibited the type I IFN signalling pathway in human hepatoma cell line HepG2 cells by suppressing the transcript levels of JAK1, STAT1 and OAS3. AFB1 also decreased the accumulation of STAT1 protein. CONCLUSION: The inhibition of the type I IFN anti-cancer response pathway by AFB1 suggest a novel mechanism by which AFB1 may induce hepatocellular carcinoma in humans.

10.
Viruses ; 7(6): 2908-27, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26057167

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human malignancies. Human tumour viruses such as KSHV are known to interact with the DNA damage response (DDR), the molecular pathways that recognise and repair lesions in cellular DNA. Here it is demonstrated that lytic reactivation of KSHV leads to activation of the ATM and DNA-PK DDR kinases resulting in phosphorylation of multiple downstream substrates. Inhibition of ATM results in the reduction of overall levels of viral replication while inhibition of DNA-PK increases activation of ATM and leads to earlier viral release. There is no activation of the ATR-CHK1 pathway following lytic replication and CHK1 phosphorylation is inhibited at later times during the lytic cycle. Despite evidence of double-strand breaks and phosphorylation of H2AX, 53BP1 foci are not consistently observed in cells containing lytic virus although RPA32 and MRE11 localise to sites of viral DNA synthesis. Activation of the DDR following KSHV lytic reactivation does not result in a G1 cell cycle block and cells are able to proceed to S-phase during the lytic cycle. KSHV appears then to selectively activate DDR pathways, modulate cell cycle progression and recruit DDR proteins to sites of viral replication during the lytic cycle.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Dano ao DNA , Reparo do DNA , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Ciclo Celular , Linhagem Celular , Humanos , Ativação Viral
11.
Virology ; 474: 94-104, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463607

RESUMO

Kaposi׳s sarcoma-associated herpesvirus (KSHV) vOX2 is a cell surface glycoprotein expressed during viral lytic replication to suppress host inflammatory reactions. Here we have characterised vOX2 with biochemical, biophysical and bioinformatics tools and as a result propose a 3-dimensional model for vOX2 based on structural and functional homology with the PD-L1 protein. To validate this model, vOX2 was characterised by analytical ultracentrifugation (AUC) and circular dichroism spectroscopy (CD). The results identified the potential glycosylation sites and revealed that vOX2 is predominantly a beta-folded molecule with an RGD adhesion motif exposed on the C-terminal domain. The protein exists in monomer-dimer equilibrium similar to its IgV-type folded homologues, with 30-36% glycosylation and the molecular weight of the extracellular fragment of molecule is 32.0-33.6 kDa, much less than 50 kDa. Thus, the structural similarity to PD-L1 verifies its immunomodulatory potential and the RGD motif suggests an adhesive capacity.


Assuntos
Antígenos CD/química , Herpesvirus Humano 8/química , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Antígeno B7-H1/química , Fenômenos Biofísicos , Células CHO , Biologia Computacional , Cricetulus , Glicosilação , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia Estrutural de Proteína , Proteínas Virais/genética
12.
J Virol ; 89(1): 35-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25320307

RESUMO

UNLABELLED: Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) causes the majority of MCC cases due to the expression of the MCPyV small and large tumor antigens (ST and LT, respectively). Although a number of molecular mechanisms have been attributed to MCPyV tumor antigen-mediated cellular transformation or replication, to date, no studies have investigated any potential link between MCPyV T antigen expression and the highly metastatic nature of MCC. Here we use a quantitative proteomic approach to show that MCPyV ST promotes differential expression of cellular proteins implicated in microtubule-associated cytoskeletal organization and dynamics. Intriguingly, we demonstrate that MCPyV ST expression promotes microtubule destabilization, leading to a motile and migratory phenotype. We further highlight the essential role of the microtubule-associated protein stathmin in MCPyV ST-mediated microtubule destabilization and cell motility and implicate the cellular phosphatase catalytic subunit protein phosphatase 4C (PP4C) in the regulation of this process. These findings suggest a possible molecular mechanism for the highly metastatic phenotype associated with MCC. IMPORTANCE: Merkel cell polyomavirus (MCPyV) causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer with a high metastatic potential. However, the molecular mechanisms leading to virally induced cancer development have yet to be fully elucidated. In particular, no studies have investigated any potential link between the virus and the highly metastatic nature of MCC. We demonstrate that the MCPyV small tumor antigen (ST) promotes the destabilization of the host cell microtubule network, which leads to a more motile and migratory cell phenotype. We further show that MCPyV ST induces this process by regulating the phosphorylation status of the cellular microtubule-associated protein stathmin by its known association with the cellular phosphatase catalytic subunit PP4C. These findings highlight stathmin as a possible biomarker of MCC and as a target for novel antitumoral therapies.


Assuntos
Antígenos Virais de Tumores/metabolismo , Movimento Celular , Interações Hospedeiro-Patógeno , Poliomavírus das Células de Merkel/fisiologia , Microtúbulos/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Fosfoproteínas Fosfatases/metabolismo , Proteoma/análise , Estatmina/metabolismo
13.
RNA ; 20(11): 1803-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25246653

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus, the etiological agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). One of the key viral proteins that contributes to tumorigenesis is vFLIP, a viral homolog of the FLICE inhibitory protein. This KSHV protein interacts with the NFκB pathway to trigger the expression of antiapoptotic and proinflammatory genes and ultimately leads to tumor formation. The expression of vFLIP is regulated at the translational level by an internal ribosomal entry site (IRES) element. However, the precise mechanism by which ribosomes are recruited internally and the exact location of the IRES has remained elusive. Here we show that a 252-nt fragment directly upstream of vFLIP, within a coding region, directs translation. We have established its RNA structure and demonstrate that IRES activity requires the presence of eIF4A and an intact eIF4G. Furthermore, and unusually for an IRES, eIF4E is part of the complex assembled onto the vFLIP IRES to direct translation. These molecular interactions define a new paradigm for IRES-mediated translation.


Assuntos
Herpesvirus Humano 8/genética , RNA Viral/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , Ribossomos/metabolismo , Transcrição Gênica
14.
Cancers (Basel) ; 6(2): 1047-64, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24961933

RESUMO

Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus.

15.
J Virol Methods ; 193(1): 251-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764419

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiologic agent of Kaposi's sarcoma (KS), a tumour of endothelial cell origin. The study of KS development was aided by the generation of a recombinant GFP (latent)/RFP (lytic)-expressing KSHV (rKSHV.219) by Vieira and O'Hearn (2004). In this study the first data characterising primary endothelial cell infection and transmission with this virus is presented. Infection was predominantly latent and the percentage of GFP-positive cells increased over time. Neither horizontal transmission of infection, nor cellular proliferation, explained this increase. Analysis of latency-associated nuclear antigen (LANA-1) expression revealed that a threshold level of infection was required for GFP expression early post infection. At later time points GFP correlated more closely with LANA-1 expression, likely due to the accumulation of GFP over time. This study provides methodological guidance for the use of rKSHV.21. In addition, it highlights potential problems associated with the use of fluorescent proteins as markers of viral infection.


Assuntos
Células Endoteliais/virologia , Herpesvirus Humano 8/fisiologia , Replicação Viral , Células Cultivadas , Fluorescência , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Coloração e Rotulagem/métodos , Fatores de Tempo , Virologia/métodos , Latência Viral
16.
Blood ; 121(18): 3768-77, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23479571

RESUMO

The mechanisms by which CC chemokine receptor (CCR)7 ligands are selectively presented on lymphatic endothelium in the presence of inflammatory chemokines are poorly understood. The chemokine-scavenging receptor D6 is expressed on lymphatic endothelial cells (LEC) and contributes to selective presentation of CCR7 ligands by suppressing inflammatory chemokine binding to LEC surfaces. As well as preventing inappropriate inflammatory cell attachment to LECs, D6 is specifically involved in regulating the ability of LEC to discriminate between mature and immature dendritic cells (DCs). D6 overexpression reduces immature DC (iDC) adhesion to LECs, whereas D6 knockdown increases adhesion of iDCs that displace mature DCs. LEC D6 expression is regulated by growth factors, cytokines, and tumor microenvironments. In particular, interleukin-6 and interferon-γ are potent inducers, indicating a preferential role for D6 in inflamed contexts. Expression of the viral interleukin-6 homolog from Kaposi sarcoma-associated herpesvirus is also sufficient to induce significant D6 upregulation both in vitro and in vivo, and Kaposi sarcoma and primary effusion lymphoma cells demonstrate high levels of D6 expression. We therefore propose that D6, which is upregulated in both inflammatory and tumor contexts, is an essential regulator of inflammatory leukocyte interactions with LECs and is required for immature/mature DC discrimination by LECs.


Assuntos
Células Endoteliais/metabolismo , Receptores CCR10/genética , Receptores CCR10/fisiologia , Animais , Células CHO , Comunicação Celular/genética , Comunicação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Cricetinae , Cricetulus , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Células Endoteliais/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores CCR10/análise , Receptores CCR10/metabolismo , Transfecção , Receptor D6 de Quimiocina
17.
J Virol ; 87(2): 798-806, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115281

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) infection is correlated with three human malignancies and can establish lifelong latent infection in multiple cell types within its human host. In order to establish and maintain infection, KSHV utilizes multiple mechanisms to evade the host immune response. One such mechanism is the expression of a family of genes with homology to cellular interferon (IFN) regulatory factors (IRFs), known as viral IRFs (vIRFs). We demonstrate here that KSHV vIRF1, -2, and -3 have a differential ability to block type I interferon signaling mediated by Toll-like receptor 3 (TLR3), a receptor we have previously shown to be activated upon KSHV infection. vIRF1, -2, and -3 inhibited TLR3-driven activation of IFN transcription reporters. However, only vIRF1 and vIRF2 inhibited increases in both IFN-ß message and protein levels following TLR3 activation. The expression of vIRF1 and vIRF2 also allowed for increased replication of a virus known to activate TLR3 signaling. Furthermore, vIRF1 and vIRF2 may block TLR3-mediated signaling via different mechanisms. Altogether, this report indicates that vIRFs are able to block IFN mediated by TLRs but that each vIRF has a unique function and mechanism for blocking antiviral IFN responses.


Assuntos
Herpesvirus Humano 8/patogenicidade , Evasão da Resposta Imune , Fatores Reguladores de Interferon/metabolismo , Interferons/antagonistas & inibidores , Receptor 3 Toll-Like/antagonistas & inibidores , Proteínas Virais/metabolismo , Linhagem Celular , Herpesvirus Humano 8/imunologia , Humanos , Fatores Reguladores de Interferon/imunologia , Interferons/imunologia , Receptor 3 Toll-Like/imunologia , Proteínas Virais/imunologia
18.
Future Microbiol ; 7(7): 815-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22827304

RESUMO

Innate immunity represents the foremost barrier to viral infection. In order to infect a cell efficiently, viruses need to evade innate immune effectors such as interferons and inflammatory cytokines. Pattern recognition receptors can detect viral components or pathogen-associated molecular patterns. These receptors then elicit innate immune responses that result in the generation of type I interferons and proinflammatory cytokines. Organized by the Society for General Microbiology, one session of this conference focused on the current state-of-the-art knowledge on innate barriers to infection of different RNA and DNA viruses. Experts working on innate immunity in the context of viral infection provided insight into different aspects of innate immune recognition and also discussed areas for future research. Here, we provide an overview of the session on innate barriers to infection.


Assuntos
Vírus de DNA/imunologia , Imunidade Inata/imunologia , Vírus de RNA/imunologia , Viroses/imunologia , Citocinas/imunologia , Humanos , Inflamação/imunologia , Interferon Tipo I/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais/imunologia , Viroses/virologia
19.
J Virol ; 86(11): 6246-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491458

RESUMO

Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200.


Assuntos
Antígenos CD/metabolismo , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/patogenicidade , Tolerância Imunológica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Linfócitos T/imunologia , Proteínas Virais/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/virologia , Antígenos CD/imunologia , Humanos , Interferon gama/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Receptores de Orexina , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/imunologia , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
20.
Virology ; 421(2): 149-58, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22018786

RESUMO

Proteasomes represent the major non-lysosomal mechanism responsible for the degradation of proteins. Following interferon γ treatment 3 proteasome subunits are replaced producing immunoproteasomes. Adenovirus E1A interacts with components of the 20S and 26S proteasome and can affect presentation of peptides. In light of these observations we investigated the relationship of AdE1A to the immunoproteasome. AdE1A interacts with the immunoproteasome subunit, MECL1. In contrast, AdE1A binds poorly to the proteasome ß2 subunit which is replaced by MECL1 in the conversion of proteasomes to immunoproteasomes. Binding sites on E1A for MECL1 correspond to the N-terminal region and conserved region 3. Furthermore, AdE1A causes down-regulation of MECL1 expression, as well as LMP2 and LMP7, induced by interferon γ treatment during Ad infections or following transient transfection. Consistent with previous reports AdE1A reduced IFNγ-stimulated STAT1 phosphorylation which appeared to be responsible for its ability to reduce expression of immunoproteasome subunits.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/patogenicidade , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Sítios de Ligação , Linhagem Celular Tumoral , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/metabolismo , Regulação para Baixo , Humanos , Interferon gama/farmacologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...