Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(42): eabp9329, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260662

RESUMO

During the last glacial period, the Laurentide Ice Sheet (LIS) underwent episodes of rapid iceberg discharge, recorded in ocean sediments as "Heinrich events" (HEs). Two competing models attempt to describe the stimulus for HEs via either internal ice sheet oscillations or external ocean-climate system forcing. We present a terrestrial record of HEs from the northeastern LIS that strongly supports ocean-climate forcing. Subglacial carbonate precipitates from Baffin Island record episodes of subglacial melting coincident with the three most recent HEs, resulting from acceleration of nearby marine-terminating ice streams. Synchronized ice stream acceleration over Baffin Island and Hudson Strait is inconsistent with internal ice sheet oscillations alone and indicates a shared ocean-climate stimulus to coordinate these different glaciological systems. Isotopic compositions of these precipitates record widespread subglacial groundwater connectivity beneath the LIS. Extensive basal melting and flushing of these aquifers during the last HE may have been a harbinger for terminal deglaciation.

2.
Nat Commun ; 13(1): 5428, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109505

RESUMO

Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.

3.
Sci Adv ; 6(16): eaay8641, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494606

RESUMO

Chondritic meteorites, derived from asteroidal parent bodies and composed of millimeter-sized chondrules, record the early stages of planetary assembly. Yet, the initial planetesimal size distribution and the duration of delay, if any, between chondrule formation and chondrite parent body accretion remain disputed. We use Pb-phosphate thermochronology with planetesimal-scale thermal models to constrain the minimum size of the LL ordinary chondrite parent body and its initial allotment of heat-producing 26Al. Bulk phosphate 207Pb/206Pb dates of LL chondrites record a total duration of cooling ≥75 Ma, with an isothermal interior that cools over ≥30 Ma. Since the duration of conductive cooling scales with parent body size, these data require a ≥150-km radius parent body and a range of bulk initial 26Al/27Al consistent with the initial 26Al/27Al ratios of constituent LL chondrules. The concordance suggests that rapid accretion of a large LL parent asteroid occurred shortly after a major chondrule-forming episode.

4.
Geochim Cosmochim Acta ; 245: 556-576, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30846885

RESUMO

The abundances of highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Pd), as well as 187Re-187Os and 182Hf-182W isotopic systematics were determined for separated metal, slightly magnetic, and nonmagnetic fractions from seven H4 to H6 ordinary chondrites. The HSE are too abundant in nonmagnetic fractions to reflect metal-silicate equilibration. The disequilibrium was likely a primary feature, as 187Re-187Os data indicate only minor open-system behavior of the HSE in the slightly and non-magnetic fractions. 182Hf-182W data for slightly magnetic and nonmagnetic fractions define precise isochrons for most meteorites that range from 5.2 ± 1.6 Ma to 15.2 ± 1.0 Ma after calcium aluminum inclusion (CAI) formation. By contrast, 182W model ages for the metal fractions are typically 2-5 Ma older than the slope-derived isochron ages for their respective, slightly magnetic and nonmagnetic fractions, with model ages ranging from 1.4 ± 0.8 Ma to 12.6 ± 0.9 Ma after CAI formation. This indicates that the W present in the silicates and oxides was not fully equilibrated with the metal when diffusive transport among components ceased, consistent with the HSE data. Further, the W isotopic compositions of size-sorted metal fractions from some of the H chondrites also differ, indicating disequilibrium among some metal grains. The chemical/isotopic disequilibrium of siderophile elements among H chondrite components is likely the result of inefficient diffusion of siderophile elements from silicates and oxides to some metal and/or localized equilibration as H chondrites cooled towards their respective Hf-W closure temperatures. The tendency of 182Hf-182W isochron ages to young from H5 to H6 chondrites may indicate derivation of these meteorites from a slowly cooled, undisturbed, concentrically-zoned parent body, consistent with models that have been commonly invoked for H chondrites. Overlap of isochron ages for H4 and H5 chondrites, by contrast, appear to be more consistent with shallow impact disruption models. The W isotopic composition of metal from one CR chondrite was examined to compare with H chondrite metals. In contrast to the H chondrites, the CR chondrite metal is characterized by an enrichment in 183W that is consistent with nucleosynthetic s-process depletion. Once corrected for the correlative nucleosynthetic effect on 182W, the 182W model age for this meteorite of 7.0 ± 3.6 Ma is within the range of model ages of most metal fractions from H chondrites. The metal is therefore too young to be a direct nebular condensate, as proposed by some prior studies.

5.
Science ; 340(6135): 941-5, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23519213

RESUMO

The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.


Assuntos
Mudança Climática , Planeta Terra , Chumbo , Silicatos , Urânio , Erupções Vulcânicas , Zircônio , Oceano Atlântico , Fatores de Tempo
6.
Science ; 335(6064): 73-6, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22223803

RESUMO

The continental lithosphere contains the oldest and most stable structures on Earth, where fragments of ancient material have eluded destruction by tectonic and surface processes operating over billions of years. Although present-day erosion of these remnants is slow, a record of how they have uplifted, eroded, and cooled over Earth's history can provide insight into the physical properties of the continents and the forces operating to exhume them over geologic time. We constructed a continuous record of ancient lithosphere cooling with the use of uranium-lead (U-Pb) thermochronology on volcanically exhumed lower crustal fragments. Combining these measurements with thermal and Pb-diffusion models constrains the range of possible erosion histories. Measured U-Pb data are consistent with extremely low erosion rates persisting over time scales approaching the age of the continents themselves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...