Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Process Res Dev ; 28(5): 1979-1989, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38783854

RESUMO

Presented here is the design and performance of a coalescing liquid-liquid filter, based on low-cost and readily available meltblown nonwoven substrates for separation of immiscible phases. The performance of the coalescer was determined across three broad classes of fluid mixtures: (i) immiscible organic/aqueous systems, (ii) a surfactant laden organic/aqueous system with modification of the type of emulsion and interfacial surface tension through the addition of sodium chloride, and (iii) a water-acetone/toluene system. The first two classes demonstrated good performance of the equipment in effecting separation, including the separation of a complex emulsion system for which a membrane separator, operating through transport of a preferentially wetting fluid through the membrane, failed entirely. The third system was used to demonstrate the performance of the separator within a multistage liquid-liquid counterflow extraction system. The performance, robust nature, and scalability of coalescing filters should mean that this approach is routinely considered for liquid-liquid separations and extractions within the fine chemical and pharmaceutical industry.

2.
Chem Sci ; 15(15): 5764-5774, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638222

RESUMO

A principal component surfactant_map was developed for 91 commonly accessible surfactants for use in surfactant-enabled organic reactions in water, an important approach for sustainable chemical processes. This map was built using 22 experimental and theoretical descriptors relevant to the physicochemical nature of these surfactant-enabled reactions, and advanced principal component analysis algorithms. It is comprised of all classes of surfactants, i.e. cationic, anionic, zwitterionic and neutral surfactants, including designer surfactants. The value of this surfactant_map was demonstrated in activating simple inorganic fluoride salts as effective nucleophiles in water, with the right surfactant. This led to the rapid development (screening 13-15 surfactants) of two fluorination reactions for ß-bromosulfides and sulfonyl chlorides in water. The latter was demonstrated in generating a sulfonyl fluoride with sufficient purity for direct use in labelling of chymotrypsin, under physiological conditions.

3.
ACS Sustain Chem Eng ; 11(23): 8675-8684, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37323809

RESUMO

Water-accelerated reactions, wherein at least one organic reactant is not soluble in water, are an important class of organic reactions, with a potentially pivotal impact on sustainability of chemical manufacturing processes. However, mechanistic understanding of the factors controlling the acceleration effect has been limited, due to the complex and varied physical and chemical nature of these processes. In this study, a theoretical framework has been established to calculate the rate acceleration of known water-accelerated reactions, giving computational estimations of the change to ΔG‡ which correlate with experimental data. In-depth study of a Henry reaction between N-methylisatin and nitromethane using our framework led to rationalization of the reaction kinetics, its lack of dependence on mixing, kinetic isotope effect, and different salt effects with NaCl and Na2SO4. Based on these findings, a multiphase flow process which includes continuous phase separation and recycling of the aqueous phase was developed, and its superior green metrics (PMI-reaction = 4 and STY = 0.64 kg L-1 h-1) were demonstrated. These findings form the essential basis for further in silico discovery and development of water-accelerated reactions for sustainable manufacturing.

4.
Org Process Res Dev ; 27(4): 627-639, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37122340

RESUMO

The problems of extracting products efficiently from reaction workups are often overlooked. Issues such as emulsions and rag layer formation can cause long separation times and slow production, thus resulting in manufacturing inefficiencies. To better understand science within this area and to support process development, an image processing methodology has been developed that can automatically track the interface between liquid-liquid phases and provide a quantitative measure of the separation rate of two immiscible liquids. The algorithm is automated and has been successfully applied to 29 cases. Its robustness has been demonstrated with a variety of different liquid mixtures that exhibit a wide range of separation behavior-making such an algorithm suited to high-throughput experimentation. The information gathered from applying the algorithm shows how issues resulting from poor separations can be detected early in process development.

5.
Angew Chem Int Ed Engl ; 62(3): e202214511, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36346840

RESUMO

The optimization of multistep chemical syntheses is critical for the rapid development of new pharmaceuticals. However, concatenating individually optimized reactions can lead to inefficient multistep syntheses, owing to chemical interdependencies between the steps. Herein, we develop an automated continuous flow platform for the simultaneous optimization of telescoped reactions. Our approach is applied to a Heck cyclization-deprotection reaction sequence, used in the synthesis of a precursor for 1-methyltetrahydroisoquinoline C5 functionalization. A simple method for multipoint sampling with a single online HPLC instrument was designed, enabling accurate quantification of each reaction, and an in-depth understanding of the reaction pathways. Notably, integration of Bayesian optimization techniques identified an 81 % overall yield in just 14 h, and revealed a favorable competing pathway for formation of the desired product.


Assuntos
Teorema de Bayes , Ciclização
6.
Bioresour Technol ; 343: 126086, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624468

RESUMO

The anaerobic co-digestion (AcoD) of microalgae is a prospective option for generating biomethane from renewable sources. This study investigates the effects of inoculum-to-substrate ratio (ISR), C/N ratio and biochar (BC) load on the AcoD of Chlorella vulgaris and cellulose. An initial augmentation of BC at ISR 0.5-0.9 and C/N ratio 10-30 offered a pH buffering effect and resulted in biomethane yields of 233-241 mL CH4/g VS, corresponding to 1.8-4.6 times the controls. BC addition ameliorated significantly AcoD, supporting the digestate stability at less favourable conditions. The effect of the process variables was further studied with a 23 factorial design and response optimisation. Under the design conditions, the variables had less influence over methane production. Higher ISRs and C/N ratios favoured AcoD, whereas increasing amounts of BC reduced biomethane yield but enhanced production rate. The factorial design highlighted the importance of BC-load on AcoD, establishing an optimum of 0.58 % (w/v).


Assuntos
Chlorella vulgaris , Anaerobiose , Biocombustíveis , Reatores Biológicos , Celulose , Carvão Vegetal , Digestão , Metano , Estudos Prospectivos
7.
J Chem Inf Model ; 61(10): 4890-4899, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34549957

RESUMO

Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr's reactivity parameter database (R2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.


Assuntos
Algoritmos , Análise de Componente Principal , Solventes
8.
J Org Chem ; 86(3): 2458-2473, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482690

RESUMO

A new, dynamic diastereomeric crystallization method has been developed, in which the mother liquors are continuously separated, racemized over a fixed-bed catalyst, and recirculated to the crystallizer in a resolution-racemization-recycle (R3) process. Separating the racemization from crystallization overcomes problems of using catalysts in situ, that suffer conflicting sets of conditions, inhibition, and separation. Continuous racemization has been achieved through the covalent attachment of [IrCp*I2]2 SCRAM catalyst to Wang resin solid support to give a fixed-bed catalyst. One tertiary and a variety of secondary optically enriched amines have been racemized efficiently, with residence times compatible with the crystallization (2.25-30 min). The catalyst demonstrates lower turnover (TOF) than the homogeneous analogue but with reuse shows a long lifetime (e.g., 40 recycles, 190 h) giving acceptable turnover number (TON) (up to 4907). The slow release of methylamine during racemization of N-methyl amines was found to inactivate the catalyst, which could be partially reactivated using hydroiodic acid. Dynamic crystallization is achieved in the R3 process through the continual removal of the more soluble diastereomer and supply of the less soluble one. The solubility of the diastereomers was determined, and the difference correlates to the rate of resolution but is also affected by the rates of racemization, crystal growth, and dissolution. A variety of cyclic and acyclic amine salts were resolved using mandelic acid (MA) and ditoluoyl tartaric acid (DTTA) with higher resolvability (S = yield × d.e.) than the simple diastereomeric crystallization alone. Comparing resolvabilities, resolutions were 1.6-44 times more effective with the R3 process than batch, though one case was worse. Further investigation of this revealed an unusual thermodynamic switching behavior: rac-N-methylphenethylamine was initially resolved as an (S,S)-bis-alkylammonium tartrate crystal but over time became the equivalent (R,S) salt. Thermal, mixing, concentration, stoichiometry, and seeding conditions were all found to affect the onset of the switching behavior which is only associated with difunctional resolving reagents.

9.
Bioresour Technol ; 321: 124494, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302012

RESUMO

The augmentation of biochar produced at 450 and 600-650 °C and hydrochar produced at 250 °C has been investigated using biochemical methane potential experiments of cellulose. The feedstocks used for the char production included the lignocellulosic (oak wood), macroalgae (Fucus serratus) and aquatic plant (water hyacinth). Biomethane production was improved with the addition of lower-temperature biochars from oak wood (285 mL CH4/g VS) and water hyacinth (294 mL CH4/g VS), corresponding to 7 and 11% more than the control. The addition of these two biochars increased the methane production rate of 2.4 and 2.3 times the control, respectively. Higher temperature biochars showed no difference. Conversely, all hydrochars and macroalgae biochars augmentation reduced methane generation by 57-86 %. The chemical and structural composition of each of the chars differed significantly. Surface oxygen functionality appears to be the most important property of the biochars that improved digestion performance.


Assuntos
Carvão Vegetal , Metano , Anaerobiose , Madeira
10.
J Agric Food Chem ; 68(48): 14297-14306, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200936

RESUMO

A high-throughput agarose gel electrophoresis (AGE) analytical method has been developed to separate lignin fractions according to their molecular weight (Mw), charge, and shape. Operating conditions to effect separation of species have been evaluated along with imaging parameters. Kraft, soda (Protobind), and Organosolv lignins showed distinct differences in migration. Bands were cut, extracted, and cross-analyzed by gel permeation chromatography (GPC), 1H NMR, and pyrolysis GC/MS to confirm their identity as lignin. The band intensity was correlated with lignin concentration by running serially diluted samples and imaging each lane to produce a precise calibration curve. The AGE technique was used to monitor and compare enzymatic, bacterial, chemical, and hydrothermal lignin digestions. Each method showed changes in lignin migration and band intensities over time. Low Mw species were seen in samples collected from the anode buffer tank. Though requiring further development, the AGE method can provide structural information about the lignin and is accessible to biological and chemistry laboratories.


Assuntos
Eletroforese em Gel de Ágar/métodos , Ensaios de Triagem em Larga Escala/métodos , Lignina/química , Lignina/isolamento & purificação , Peso Molecular
11.
Nat Commun ; 11(1): 5753, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188226

RESUMO

Solubility prediction remains a critical challenge in drug development, synthetic route and chemical process design, extraction and crystallisation. Here we report a successful approach to solubility prediction in organic solvents and water using a combination of machine learning (ANN, SVM, RF, ExtraTrees, Bagging and GP) and computational chemistry. Rational interpretation of dissolution process into a numerical problem led to a small set of selected descriptors and subsequent predictions which are independent of the applied machine learning method. These models gave significantly more accurate predictions compared to benchmarked open-access and commercial tools, achieving accuracy close to the expected level of noise in training data (LogS ± 0.7). Finally, they reproduced physicochemical relationship between solubility and molecular properties in different solvents, which led to rational approaches to improve the accuracy of each models.

12.
Chem Sci ; 11(22): 5808-5818, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832055

RESUMO

A new method for the direct synthesis of primary and secondary amides from carboxylic acids is described using Mg(NO3)2·6H2O or imidazole as a low-cost and readily available catalyst, and urea as a stable, and easy to manipulate nitrogen source. This methodology is particularly useful for the direct synthesis of primary and methyl amides avoiding the use of ammonia and methylamine gas which can be tedious to manipulate. Furthermore, the transformation does not require the employment of coupling or activating agents which are commonly required.

13.
Chimia (Aarau) ; 73(10): 817-822, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31645242

RESUMO

A new hybridized algorithm that combines process optimisation with response surface mapping was developed and applied in an automated continuous flow reaction. Moreover, a photochemical cascade CSTR was developed and characterised by chemical actinometry, showing photon flux density of ten times greater than previously reported in batch. The success of the algorithm was then evaluated in the aerobic oxidation of sp³ C-H bonds using benzophenone as photosensitizer in the newly developed photo reactor.

14.
Beilstein J Org Chem ; 14: 2220-2228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202475

RESUMO

Chloramines are an important class of reagents, providing a convenient source of chlorine or electrophilic nitrogen. However, the instability of these compounds is a problem which makes their isolation and handling difficult. To overcome these hazards, a continuous-flow approach is reported which generates and immediately reacts N-chloramines directly, avoiding purification and isolation steps. 2-Chloramines were produced from the reaction of styrenes with N-alkyl-N-sulfonyl-N-chloramines, whilst N-alkyl or N,N'-dialkyl-N-chloramines reacted with anisaldehyde in the presence of t-BuO2H oxidant to afford amides. Primary and secondary imines were produced under continuous conditions from the reaction of N-chloramines with base, with one example subsequently reduced under asymmetric conditions to produce a chiral amine in 94% ee.

15.
Angew Chem Int Ed Engl ; 57(33): 10535-10539, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29741801

RESUMO

We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2 O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L-1 h-1 ). This scalable benchtop method provides a distinct advantage over conventional bio-oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space-time yields for bio-oxidation.


Assuntos
Oxirredutases/metabolismo , Oxigênio/química , Biocatálise , Peróxido de Hidrogênio/química , Monoaminoxidase/metabolismo , Oxirredução , Oxigênio/metabolismo , Solubilidade , Água/química
16.
Org Biomol Chem ; 14(29): 7092-8, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27377259

RESUMO

The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.

17.
Dalton Trans ; 45(16): 6812-5, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26924272

RESUMO

Here in, we report the cytotoxicity of both rhodium and iridium functionalised Cp* analogues of the [Cp*MCl2]2 dimers. The functionalised dimers contain a hydroxy tethered arm of differing carbon length. These show promising IC50 values when tested against HT-29, A2780 and cisplatin-resistant A2780cis human cancer cell lines, with the cytotoxicity improving proportionally with an increase in carbon tether length of the Cp* ring. The most promising results are seen for the 14-carbon Cp* tethered rhodium () and iridium () complexes, which show up to a 24-fold increase in IC50 compared to the unfunctionalised [Cp*MCl2]2 dimer. All complexes were potent inhibitors of purified thioredoxin reductase suggesting that disruption of cellular anti-oxidant function is one potential mechanism of action.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Irídio/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ródio/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HT29 , Humanos , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
18.
Org Biomol Chem ; 14(14): 3614-22, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26984714

RESUMO

The iridium complex of pentamethylcyclopentadiene and (S,S)-1,2-diphenyl-N'-tosylethane-1,2-diamine is an effective catalyst for the asymmetric transfer hydrogenation of imine substrates under acidic conditions. Using the Ir catalyst and a 5 : 2 ratio of formic acid : triethylamine as the hydride source for the asymmetric transfer hydrogenation of 1-methyl-3,4-dihydroisoquinoline and its 6,7-dimethoxy substituted derivative, in either acetonitrile or dichloromethane, shows unusual enantiomeric excess (ee) profiles for the product amines. The reactions initially give predominantly the (R) enantiomer of the chiral amine products with >90% ee but which then decreases significantly during the reaction. The decrease in ee is not due to racemisation of the product amine, but because the rate of formation of the (R)-enantiomer follows first-order kinetics whereas that for the (S)-enantiomer is zero-order. This difference in reaction order explains the change in selectivity as the reaction proceeds - the rate formation of the (R)-enantiomer decreases exponentially with time while that for the (S)-enantiomer remains constant. A reaction scheme is proposed which requires rate-limiting hydride transfer from the iridium hydride to the iminium ion for the first-order rate of formation of the (R)-enantiomer amine and rate-limiting dissociation of the product for the zero-order rate of formation of the (S)-enantiomer.

19.
Chem Commun (Camb) ; 52(5): 1013-6, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26593690

RESUMO

We report a new method for the conversion of nitroalkanes into carboxylic acids that achieves this transformation under very mild conditions. Catalytic amounts of iodide in combination with a simple zinc catalyst are needed to give good conversions into the corresponding carboxylic acids.

20.
Chem Commun (Camb) ; 52(7): 1436-8, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26645321

RESUMO

A simple, mild and general procedure for the hydration of nitriles to amides using copper as catalyst and promoted by N,N-diethylhydroxylamine is described. The reaction can be conducted in water at low temperature in short reaction times. This new procedure allows amides to be obtained from a wide range of substrates in excellent yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...