Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 135(6): 1581-1589, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668237

RESUMO

Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in the skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule that has multiple mechanisms of antibacterial action and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides. Pentobra demonstrated potent and selective killing of P. acnes but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5-7 logs) against multiple P. acnes clinical strains. Moreover, electron microscopic studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Peptídeos/química , Propionibacterium acnes/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Farmacorresistência Bacteriana , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Monócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/microbiologia , Especificidade da Espécie , Células-Tronco , Tobramicina/química
2.
ACS Nano ; 8(9): 8786-93, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25130648

RESUMO

Most antibiotics target growth processes and are ineffective against persister bacterial cells, which tolerate antibiotics due to their reduced metabolic activity. These persisters act as a genetic reservoir for resistant mutants and constitute a root cause of antibiotic resistance, a worldwide problem in human health. We re-engineer antibiotics specifically for persisters using tobramycin, an aminoglycoside antibiotic that targets bacterial ribosomes but is ineffective against persisters with low metabolic and cellular transport activity. By giving tobramycin the ability to induce nanoscopic negative Gaussian membrane curvature via addition of 12 amino acids, we transform tobramycin itself into a transporter sequence. The resulting molecule spontaneously permeates membranes, retains the high antibiotic activity of aminoglycosides, kills E. coli and S. aureus persisters 4-6 logs better than tobramycin, but remains noncytotoxic to eukaryotes. These results suggest a promising paradigm to renovate traditional antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/química , Tobramicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...