Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(36): eadh2023, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672588

RESUMO

Previous studies have revealed a role for proline metabolism in supporting cancer development and metastasis. In this study, we show that many cancer cells respond to loss of attachment by accumulating and secreting proline. Detached cells display reduced proliferation accompanied by a general decrease in overall protein production and de novo amino acid synthesis compared to attached cells. However, proline synthesis was maintained under detached conditions. Furthermore, while overall proline incorporation into proteins was lower in detached cells compared to other amino acids, there was an increased production of the proline-rich protein collagen. The increased excretion of proline from detached cells was also shown to be used by macrophages, an abundant and important component of the tumor microenvironment. Our study suggests that detachment induced accumulation and secretion of proline may contribute to tumor progression by supporting increased production of extracellular matrix and providing proline to surrounding stromal cells.


Assuntos
Neoplasias , Prolina , Aminoácidos , Transporte Biológico , Matriz Extracelular , Macrófagos
2.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245210

RESUMO

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Assuntos
Neoplasias da Mama , Formiatos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Neoplasias da Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Espécies Reativas de Oxigênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
3.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230079

RESUMO

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Autoimunidade , Linfócitos T , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Hipoglicemiantes/farmacologia
4.
Nature ; 615(7953): 705-711, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922598

RESUMO

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Assuntos
Sacarose , Edulcorantes , Linfócitos T , Animais , Camundongos , Sacarose/análogos & derivados , Edulcorantes/administração & dosagem , Edulcorantes/efeitos adversos , Edulcorantes/farmacologia , Edulcorantes/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Inocuidade dos Alimentos , Sinalização do Cálcio/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Infecções Bacterianas/imunologia , Neoplasias/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia
5.
Front Immunol ; 12: 637960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868263

RESUMO

Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.


Assuntos
Inflamação/imunologia , Microbiota/fisiologia , Mitocôndrias/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Humanos , Imunomodulação , Nutrientes , Oxirredução
6.
Nat Commun ; 12(1): 1209, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619282

RESUMO

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Assuntos
Frutose/farmacologia , Glutamina/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ácidos/metabolismo , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Marcação por Isótopo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise do Fluxo Metabólico , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fenótipo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
7.
J Cell Sci ; 133(5)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144194

RESUMO

The importance of cancer-cell-autonomous functions of the tumour suppressor p53 (encoded by TP53) has been established in many studies, but it is now clear that the p53 status of the cancer cell also has a profound impact on the immune response. Loss or mutation of p53 in cancers can affect the recruitment and activity of myeloid and T cells, allowing immune evasion and promoting cancer progression. p53 can also function in immune cells, resulting in various outcomes that can impede or support tumour development. Understanding the role of p53 in tumour and immune cells will help in the development of therapeutic approaches that can harness the differential p53 status of cancers compared with most normal tissue.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Imunidade , Mutação , Neoplasias/genética , Proteína Supressora de Tumor p53/genética
8.
Cell Rep ; 30(2): 481-496.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940491

RESUMO

Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.


Assuntos
Células Mieloides/metabolismo , Linfócitos T Reguladores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Camundongos
9.
Cell Metab ; 30(4): 720-734.e5, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31447323

RESUMO

Cancer metastasis depends on cell survival following loss of extracellular matrix attachment and dissemination through the circulation. The metastatic spread can be enhanced by the clustering of detached cancer cells and increased antioxidant defense. Here, we link these responses by describing how cell clustering limits reactive oxygen species (ROS). Loss of attachment causes mitochondrial perturbations and increased ROS production. The formation of cell clusters induces a hypoxic environment that drives hypoxia-inducible factor 1-alpha (Hif1α)-mediated mitophagy, clearing damaged mitochondria and limiting ROS. However, hypoxia and reduced mitochondrial capacity promote dependence on glycolysis for ATP production that is supported by cytosolic reductive metabolism. Preventing this metabolic adaptation or disruption of cell clusters results in ROS accumulation, cell death, and a reduction of metastatic capacity in vivo. Our results provide a mechanistic explanation for the role of cell clustering in supporting survival during extracellular matrix detachment and metastatic spread and may point to targetable vulnerabilities.


Assuntos
Mitocôndrias/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipóxia Celular , Movimento Celular , Sobrevivência Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Mitofagia
10.
Proc Natl Acad Sci U S A ; 116(18): 8975-8984, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988188

RESUMO

T cell help in humoral immunity includes interactions of B cells with activated extrafollicular CD4+ and follicular T helper (Tfh) cells. Each can promote antibody responses but Tfh cells play critical roles during germinal center (GC) reactions. After restimulation of their antigen receptor (TCR) by B cells, helper T cells act on B cells via CD40 ligand and secreted cytokines that guide Ig class switching. Hypoxia is a normal feature of GC, raising questions about molecular mechanisms governing the relationship between hypoxia response mechanisms and T cell help to antibody responses. Hypoxia-inducible factors (HIF) are prominent among mechanisms that mediate cellular responses to limited oxygen but also are induced by lymphocyte activation. We now show that loss of HIF-1α or of both HIF-1α and HIF-2α in CD4+ T cells compromised essential functions in help during antibody responses. HIF-1α depletion from CD4+ T cells reduced frequencies of antigen-specific GC B cells, Tfh cells, and overall antigen-specific Ab after immunization with sheep red blood cells. Compound deficiency of HIF-1α and HIF-2α led to humoral defects after hapten-carrier immunization. Further, HIF promoted CD40L expression while restraining the FoxP3-positive CD4+ cells in the CXCR5+ follicular regulatory population. Glycolysis increases T helper cytokine expression, and HIF promoted glycolysis in T helper cells via TCR or cytokine stimulation, as well as their production of cytokines that direct antibody class switching. Indeed, IFN-γ elaboration by HIF-deficient in vivo-generated Tfh cells was impaired. Collectively, the results indicate that HIF transcription factors are vital components of the mechanisms of help during humoral responses.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Hipóxia Celular/imunologia , Hipóxia Celular/fisiologia , Citocinas/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Hipóxia/metabolismo , Imunidade Humoral , Imunização , Ativação Linfocitária/imunologia , Ativação Linfocitária/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CXCR5/metabolismo , Ovinos , Linfócitos T Auxiliares-Indutores/imunologia
11.
Cell Metab ; 28(5): 721-736.e6, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122553

RESUMO

Numerous mechanisms to support cells under conditions of transient nutrient starvation have been described. Several functions of the tumor-suppressor protein p53 can contribute to the adaptation of cells to metabolic stress and help cancer cell survival under nutrient-limiting conditions. We show here that p53 promotes the expression of SLC1A3, an aspartate/glutamate transporter that allows the utilization of aspartate to support cells in the absence of extracellular glutamine. Under glutamine deprivation, SLC1A3 expression maintains electron transport chain and tricarboxylic acid cycle activity, promoting de novo glutamate, glutamine, and nucleotide synthesis to rescue cell viability. Tumor cells with high levels of SLC1A3 expression are resistant to glutamine starvation, and SLC1A3 depletion retards the growth of these cells in vitro and in vivo, suggesting a therapeutic potential for SLC1A3 inhibition.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Glutamina/metabolismo , Neoplasias/metabolismo , Inanição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adaptação Fisiológica , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclo do Ácido Cítrico , Feminino , Humanos , Camundongos Endogâmicos BALB C
12.
Sci Immunol ; 3(23)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752301

RESUMO

Mycobacterium tuberculosis (Mtb) is one of the most ancient human pathogens, yet the exact mechanism(s) of host defense against Mtb remains unclear. Although one-third of the world's population is chronically infected with Mtb, only 5 to 10% develop active disease. This indicates that, in addition to resistance mechanisms that control bacterial burden, the host has also evolved strategies to tolerate the presence of Mtb to limit disease severity. We identify mitochondrial cyclophilin D (CypD) as a critical checkpoint of T cell metabolism that controls the expansion of activated T cells. Although loss of CypD function in T cells led to enhanced Mtb antigen-specific T cell responses, this increased T cell response had no impact on bacterial burden. Rather, mice containing CypD-deficient T cells exhibited substantially compromised disease tolerance and succumbed to Mtb infection. This study establishes a mechanistic link between T cell-mediated immunity and disease tolerance during Mtb infection.


Assuntos
Ciclofilinas/imunologia , Mitocôndrias/imunologia , Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis
13.
Proc Natl Acad Sci U S A ; 115(10): E2202-E2209, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463754

RESUMO

The translation of mRNAs into proteins serves as a critical regulatory event in gene expression. In the context of cancer, deregulated translation is a hallmark of transformation, promoting the proliferation, survival, and metastatic capabilities of cancer cells. The best-studied factor involved in the translational control of cancer is the eukaryotic translation initiation factor 4E (eIF4E). We and others have shown that eIF4E availability and phosphorylation promote metastasis in mouse models of breast cancer by selectively augmenting the translation of mRNAs involved in invasion and metastasis. However, the impact of translational control in cell types within the tumor microenvironment (TME) is unknown. Here, we demonstrate that regulatory events affecting translation in cells of the TME impact cancer progression. Mice bearing a mutation in the phosphorylation site of eIF4E (S209A) in cells comprising the TME are resistant to the formation of lung metastases in a syngeneic mammary tumor model. This is associated with reduced survival of prometastatic neutrophils due to decreased expression of the antiapoptotic proteins BCL2 and MCL1. Furthermore, we demonstrate that pharmacological inhibition of eIF4E phosphorylation prevents metastatic progression in vivo, supporting the development of phosphorylation inhibitors for clinical use.


Assuntos
Neoplasias da Mama/patologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neutrófilos/metabolismo , Biossíntese de Proteínas , Microambiente Tumoral , Motivos de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/química , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Metástase Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Nature ; 544(7650): 372-376, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28425994

RESUMO

The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.


Assuntos
Glicina/deficiência , Neoplasias Intestinais/dietoterapia , Neoplasias Intestinais/metabolismo , Linfoma/dietoterapia , Linfoma/metabolismo , Serina/deficiência , Animais , Antioxidantes/metabolismo , Biguanidas/farmacologia , Linhagem Celular Tumoral , Dieta , Modelos Animais de Doenças , Feminino , Privação de Alimentos , Glicina/metabolismo , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Linfoma/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estado Nutricional , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina/biossíntese , Serina/metabolismo , Serina/farmacologia , Taxa de Sobrevida
16.
Cancer Res ; 76(20): 6118-6129, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27530326

RESUMO

There is a need for transplantable murine models of ovarian high-grade serous carcinoma (HGSC) with regard to mutations in the human disease to assist investigations of the relationships between tumor genotype, chemotherapy response, and immune microenvironment. In addressing this need, we performed whole-exome sequencing of ID8, the most widely used transplantable model of ovarian cancer, covering 194,000 exomes at a mean depth of 400× with 90% exons sequenced >50×. We found no functional mutations in genes characteristic of HGSC (Trp53, Brca1, Brca2, Nf1, and Rb1), and p53 remained transcriptionally active. Homologous recombination in ID8 remained intact in functional assays. Further, we found no mutations typical of clear cell carcinoma (Arid1a, Pik3ca), low-grade serous carcinoma (Braf), endometrioid (Ctnnb1), or mucinous (Kras) carcinomas. Using CRISPR/Cas9 gene editing, we modeled HGSC by generating novel ID8 derivatives that harbored single (Trp53-/-) or double (Trp53-/-;Brca2-/-) suppressor gene deletions. In these mutants, loss of p53 alone was sufficient to increase the growth rate of orthotopic tumors with significant effects observed on the immune microenvironment. Specifically, p53 loss increased expression of the myeloid attractant CCL2 and promoted the infiltration of immunosuppressive myeloid cell populations into primary tumors and their ascites. In Trp53-/-;Brca2-/- mutant cells, we documented a relative increase in sensitivity to the PARP inhibitor rucaparib and slower orthotopic tumor growth compared with Trp53-/- cells, with an appearance of intratumoral tertiary lymphoid structures rich in CD3+ T cells. This work validates new CRISPR-generated models of HGSC to investigate its biology and promote mechanism-based therapeutics discovery. Cancer Res; 76(20); 6118-29. ©2016 AACR.


Assuntos
Proteína BRCA2/fisiologia , Sistemas CRISPR-Cas/fisiologia , Cistadenocarcinoma Seroso/etiologia , Modelos Animais de Doenças , Neoplasias Ovarianas/etiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Proteína BRCA2/genética , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Exoma , Feminino , Edição de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
17.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474064

RESUMO

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Adaptação Fisiológica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Glucose/deficiência , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metabolômica , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Purinas/biossíntese , Ácido Pirúvico/metabolismo , Serina/biossíntese
18.
Elife ; 42015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26496200

RESUMO

T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN-AMPK metabolic signaling nexus essential for selectively promoting Tfh responses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética
19.
Cell Metab ; 22(4): 577-89, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26365179

RESUMO

Metabolic reprogramming is a hallmark of cellular transformation, yet little is known about metabolic changes that accompany tumor metastasis. Here we show that primary breast cancer cells display extensive metabolic heterogeneity and engage distinct metabolic programs depending on their site of metastasis. Liver-metastatic breast cancer cells exhibit a unique metabolic program compared to bone- or lung-metastatic cells, characterized by increased conversion of glucose-derived pyruvate into lactate and a concomitant reduction in mitochondrial metabolism. Liver-metastatic cells displayed increased HIF-1α activity and expression of the HIF-1α target Pyruvate dehydrogenase kinase-1 (PDK1). Silencing HIF-1α reversed the glycolytic phenotype of liver-metastatic cells, while PDK1 was specifically required for metabolic adaptation to nutrient limitation and hypoxia. Finally, we demonstrate that PDK1 is required for efficient liver metastasis, and its expression is elevated in liver metastases from breast cancer patients. Our data implicate PDK1 as a key regulator of metabolism and metastatic potential in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Engenharia Metabólica , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Neoplasias da Mama/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glutamina/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , RNA Interferente Pequeno/metabolismo
20.
Immunity ; 42(1): 41-54, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607458

RESUMO

Naive T cells undergo metabolic reprogramming to support the increased energetic and biosynthetic demands of effector T cell function. However, how nutrient availability influences T cell metabolism and function remains poorly understood. Here we report plasticity in effector T cell metabolism in response to changing nutrient availability. Activated T cells were found to possess a glucose-sensitive metabolic checkpoint controlled by the energy sensor AMP-activated protein kinase (AMPK) that regulated mRNA translation and glutamine-dependent mitochondrial metabolism to maintain T cell bioenergetics and viability. T cells lacking AMPKα1 displayed reduced mitochondrial bioenergetics and cellular ATP in response to glucose limitation in vitro or pathogenic challenge in vivo. Finally, we demonstrated that AMPKα1 is essential for T helper 1 (Th1) and Th17 cell development and primary T cell responses to viral and bacterial infections in vivo. Our data highlight AMPK-dependent regulation of metabolic homeostasis as a key regulator of T cell-mediated adaptive immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Adaptação Fisiológica/imunologia , Animais , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Metabolismo Energético , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Biossíntese de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...