Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(8): 4000-4011, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912079

RESUMO

Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2ß2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and ß subunits are fused and are designated as (αß)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2ß2/(αß)2 GlyRSs. Here we describe structures of the (αß)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped ß half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated ∼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.


Assuntos
Glicina-tRNA Ligase , Glicina-tRNA Ligase/genética , Anticódon , RNA de Transferência de Glicina/química , RNA de Transferência , Plastídeos
2.
Annu Rev Genet ; 56: 187-205, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055649

RESUMO

In bacteria, transcription and translation take place in the same cellular compartment. Therefore, a messenger RNA can be translated as it is being transcribed, a process known as transcription-translation coupling. This process was already recognized at the dawn of molecular biology, yet the interplay between the two key players, the RNA polymerase and ribosome, remains elusive. Genetic data indicate that an RNA sequence can be translated shortly after it has been transcribed. The closer both processes are in time, the less accessible the RNA sequence is between the RNA polymerase and ribosome. This temporal coupling has important consequences for gene regulation. Biochemical and structural studies have detailed several complexes between the RNA polymerase and ribosome. The in vivo relevance of this physical coupling has not been formally demonstrated. We discuss how both temporal and physical coupling may mesh to produce the phenomenon we know as transcription-translation coupling.


Assuntos
Bactérias , Ribossomos , Bactérias/genética , Ribossomos/genética , RNA Mensageiro/genética
3.
J Biol Chem ; 295(19): 6570-6585, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32249211

RESUMO

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.


Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Formiato Desidrogenases/química , Proteínas Ferro-Enxofre/química , Complexos Multienzimáticos/química , Domínio Catalítico , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Cinética , NAD/química
4.
Mol Microbiol ; 112(5): 1531-1551, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449700

RESUMO

The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Transdução de Sinais/genética , Treonina/genética , Transcrição Gênica/genética
5.
Nat Commun ; 10(1): 2629, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201355

RESUMO

Light initiates chloroplast biogenesis by activating photosynthesis-associated genes encoded by not only the nuclear but also the plastidial genome, but how photoreceptors control plastidial gene expression remains enigmatic. Here we show that the photoactivation of phytochromes triggers the expression of photosynthesis-associated plastid-encoded genes (PhAPGs) by stimulating the assembly of the bacterial-type plastidial RNA polymerase (PEP) into a 1000-kDa complex. Using forward genetic approaches, we identified REGULATOR OF CHLOROPLAST BIOGENESIS (RCB) as a dual-targeted nuclear/plastidial phytochrome signaling component required for PEP assembly. Surprisingly, RCB controls PhAPG expression primarily from the nucleus by interacting with phytochromes and promoting their localization to photobodies for the degradation of the transcriptional regulators PIF1 and PIF3. RCB-dependent PIF degradation in the nucleus signals the plastids for PEP assembly and PhAPG expression. Thus, our findings reveal the framework of a nucleus-to-plastid anterograde signaling pathway by which phytochrome signaling in the nucleus controls plastidial transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fitocromo/metabolismo , Tiorredoxinas/metabolismo , Transcrição Gênica/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos da radiação
6.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137816

RESUMO

The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , Transcrição Gênica
7.
Nucleic Acids Res ; 45(19): 11043-11055, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977553

RESUMO

In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética
8.
Curr Opin Struct Biol ; 22(6): 750-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22981944

RESUMO

The structures of ribosomes in complex with inhibitors of translation have not only shed light on the interactions of antibiotics with the ribosome but also on the underlying mechanisms by which they interfere with the ribosome function. Several recent papers [1(•),2(••),3,4] have correlated the available ribosome structures with the wealth of biochemical data [5(•)]. In this review we shall focus on the lessons learned for drug specificity rather than presenting a comprehensive survey of the known structures of ribosome complexes with antibiotics.


Assuntos
Farmacorresistência Bacteriana , Ribossomos/efeitos dos fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Ribossomos/química , Ribossomos/metabolismo , Especificidade por Substrato
9.
Science ; 336(6083): 915-8, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22605777

RESUMO

Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Escherichia coli/química , Proteínas Ribossômicas/química , Ribossomos/química , Thermus thermophilus/química , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação em Procariotos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...