Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3436, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653767

RESUMO

Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.


Assuntos
Lotus , Microbiota , Nitrogênio , Raízes de Plantas , Transdução de Sinais , Simbiose , Lotus/microbiologia , Lotus/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Rizosfera , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbiologia do Solo , Fixação de Nitrogênio , Exsudatos de Plantas/metabolismo
2.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Front Microbiol ; 13: 942396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406450

RESUMO

Intensive agriculture systems have paved the way for a growing human population. However, the abundant use of mineral fertilizers and pesticides may negatively impact nutrient cycles and biodiversity. One potential alternative is to harness beneficial relationships between plants and plant-associated rhizobacteria to increase nutrient-use efficiency and provide pathogen resistance. Plant-associated microbiota profiling can be achieved using high-throughput 16S rRNA gene amplicon sequencing. However, interrogation of these data is limited by confident taxonomic classifications at high taxonomic resolution (genus- or species level) with the commonly applied universal reference databases. High-throughput full-length 16S rRNA gene sequencing combined with automated taxonomy assignment (AutoTax) can be used to create amplicon sequence variant resolved ecosystems-specific reference databases that are superior to the traditional universal reference databases. This approach was used here to create a custom reference database for bacteria and archaea based on 987,353 full-length 16S rRNA genes from Askov and Cologne soils. We evaluated the performance of the database using short-read amplicon data and found that it resulted in the increased genus- and species-level classification compared to commonly use universal reference databases. The custom database was utilized to evaluate the ecosystem-specific primer bias and taxonomic resolution of amplicon primers targeting the V5-V7 region of the 16S rRNA gene commonly used within the plant microbiome field. Finally, we demonstrate the benefits of custom ecosystem-specific databases through the analysis of V5-V7 amplicon data to identify new plant-associated microbes for two legumes and two cereal species.

4.
Cell Host Microbe ; 29(4): 620-634.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713601

RESUMO

Immune systems respond to "non-self" molecules termed microbe-associated molecular patterns (MAMPs). Microbial genes encoding MAMPs have adaptive functions and are thus evolutionarily conserved. In the presence of a host, these genes are maladaptive and drive antagonistic pleiotropy (AP) because they promote microbe elimination by activating immune responses. The role AP plays in balancing the functionality of MAMP-coding genes against their immunogenicity is unknown. To address this, we focused on an epitope of flagellin that triggers antibacterial immunity in plants. Flagellin is conserved because it enables motility. Here, we decode the immunogenic and motility profiles of this flagellin epitope and determine the spectrum of amino acid mutations that drives AP. We discover two synthetic mutational tracks that undermine the detection activities of a plant flagellin receptor. These tracks generate epitopes with either antagonist or weaker agonist activities. Finally, we find signatures of these tracks layered atop each other in natural Pseudomonads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/imunologia , Epitopos/genética , Flagelina/genética , Imunidade , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...