Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 21944, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753952

RESUMO

Biological hotspots are places with outstanding biodiversity features, and their delineation is essential to the design of marine protected areas (MPAs). For the Central Coast of Canada's Northern Shelf Bioregion, where an MPA network is being developed, we identified hotspots for structural corals and large-bodied sponges, which are foundation species vulnerable to bottom contact fisheries, and for Sebastidae, a fish family which includes species that are long-lived (> 100 years), overexploited, evolutionary distinctive, and at high trophic levels. Using 11 years of survey data that spanned from inland fjords to oceanic waters, we derived hotspot indices that accounted for species characteristics and abundances and examined hotspot distribution across depths and oceanographic subregions. The results highlight previously undocumented hotspot distributions, thereby informing the placement of MPAs for which high levels of protection are warranted. Given the vulnerability of the taxa that we examined to cumulative fishery impacts, prospective MPAs derived from our data should be considered for interim protection measures during the protracted period between final network design and the enactment of MPA legislations. These recommendations reflect our scientific data, which are only one way of understanding the seascape. Our surveys did not cover many locations known to Indigenous peoples as biologically important. Consequently, Indigenous knowledge should also contribute substantially to the design of the MPA network.


Assuntos
Antozoários , Ecossistema , Perciformes , Poríferos , Animais , Biodiversidade , Canadá , Conservação dos Recursos Naturais/métodos , Oceano Pacífico
3.
PeerJ ; 8: e9825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913682

RESUMO

For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of these management tools may vary interspecifically and spatially. Using visual survey data collected on the Central Coast of British Columbia, for 12 species of exploited rockfish we found that body size responses to spatial fishery closures depended on interspecific variation in growth parameter k (the rate at which the asymptotic body size is approached) and on location. For two closures, relative body sizes were larger at protected than at adjacent fished sites, and these differences were greater for species with lower k values. Reduced fishery mortality likely drove these results, as an unfished species did not respond to spatial protection. For three closures, however, body sizes did not differ between protected and adjacent fished sites, and for another closure species with higher k values were larger at fished than at protected sites while species with lower k values had similar sizes in both treatments. Variation in the age of closures is unlikely to have influenced results, as most data were collected when closures were 13 to 15-years-old. Rather, the lack of larger fish inside four of six spatial fishery closures potentially reflects a combination of smaller size of the area protected, poor fisher compliance, and lower oceanographic productivity. Interspecific differences in movement behavior did not affect body size responses to spatial protection. To improve understanding, additional research should be conducted at deeper depths encompassing the distribution of older, larger fish. Our study-which was conceptualized and executed by an alliance of Indigenous peoples seeking to restore rockfishes-illustrates how life history and behavioral theory provide a useful lens for framing and interpreting species differences in responses to spatial protection.

4.
Zoology (Jena) ; 117(6): 377-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25041843

RESUMO

Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach.


Assuntos
Tamanho Corporal/fisiologia , Reação de Fuga/fisiologia , Atividade Motora/fisiologia , Comportamento Predatório/fisiologia , Tubarões/fisiologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...