Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562871

RESUMO

Optogenetics allows manipulation of neural circuits in vivo with high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models). Here, we have developed, optimised, and tested in vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181 µLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies. Thinning the combined µLED and needle backplane of the device from 300 µm to 230 µm improved the efficiency of light delivery to tissue by 80%, allowing lower µLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1°C. The device was tested in vivo in the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons. It was shown that the strongest optogenetic response occurred in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling - demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential (LFP) activity.

2.
Commun Biol ; 7(1): 329, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485764

RESUMO

Optogenetics has transformed studies of neural circuit function, but remains challenging to apply to non-human primates (NHPs). A major challenge is delivering intense, spatiotemporally-precise, patterned photostimulation across large volumes in deep tissue. Such stimulation is critical, for example, to modulate selectively deep-layer corticocortical feedback circuits. To address this need, we have developed the Utah Optrode Array (UOA), a 10×10 glass needle waveguide array fabricated atop a novel opaque optical interposer, and bonded to an electrically addressable µLED array. In vivo experiments with the UOA demonstrated large-scale, spatiotemporally precise, activation of deep circuits in NHP cortex. Specifically, the UOA permitted both focal (confined to single layers/columns), and widespread (multiple layers/columns) optogenetic activation of deep layer neurons, as assessed with multi-channel laminar electrode arrays, simply by varying the number of activated µLEDs and/or the irradiance. Thus, the UOA represents a powerful optoelectronic device for targeted manipulation of deep-layer circuits in NHP models.


Assuntos
Neurônios , Optogenética , Animais , Eletrodos , Neurônios/fisiologia , Primatas/fisiologia , Utah
3.
Opt Mater (Amst) ; 1472024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283740

RESUMO

The metal-ligand complex tris(2,2'-bipyridine)ruthenium(II) chloride (Ru probe) displays a broad emission spectrum ranging from 540 to 730 nm. The emission spectra of Ru probe were measured when placed on top of a one-dimensional photonic crystal (1DPC), which supports both Bloch surface wave (BSW) and internal modes for wavelengths below 640 nm and only internal modes above 640 nm. The S-polarized emission spectra, with the electric vector parallel to the 1DPC surface, were found to be strongly dependent on the observation angle through the coupling prism. Also, the usual single broad-emission spectrum of Ru probe on glass was converted into two or more narrow-band-spectrum on the 1DPC, with emission band maxima dependent on the observation angle. The two S-polarized emission band peaks for Ru probe were found to be consistent with coupling to the BSW and first internal mode (IM1) of the 1DPC. The same spectral shifts and changes in emission maxima were observed by using Kretschmann and reverse Kretschmann illuminations. As the coupling requires the emitter to be in proximity with the photonic structure, we calculated near- and far-field distributions of a dipole directly located on the 1DPC surface. Finite-Difference Time-Domain (FDTD) simulations were performed to confirm fluorophore coupling to the BSW and internal modes (IMs). Both the measured and simulated results showed that IM coupled emission is significant. Coupling to the IM mode occurred at longer wavelengths where the 1DPC did not support a BSW. These results demonstrate that a simple Bragg grating, without a BSW mode, can be used for detection of surface-bound fluorophores.

4.
Opt Express ; 31(5): 7505-7514, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859879

RESUMO

High-resolution microscopy of deep tissue with large field-of-view (FOV) is critical for elucidating organization of cellular structures in plant biology. Microscopy with an implanted probe offers an effective solution. However, there exists a fundamental trade-off between the FOV and probe diameter arising from aberrations inherent in conventional imaging optics (typically, FOV < 30% of diameter). Here, we demonstrate the use of microfabricated non-imaging probes (optrodes) that when combined with a trained machine-learning algorithm is able to achieve FOV of 1x to 5x the probe diameter. Further increase in FOV is achieved by using multiple optrodes in parallel. With a 1 × 2 optrode array, we demonstrate imaging of fluorescent beads (including 30 FPS video), stained plant stem sections and stained living stems. Our demonstration lays the foundation for fast, high-resolution microscopy with large FOV in deep tissue via microfabricated non-imaging probes and advanced machine learning.


Assuntos
Algoritmos , Microscopia , Corantes , Aprendizado de Máquina
5.
Res Sq ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909489

RESUMO

Optogenetics has transformed studies of neural circuit function, but remains challenging to apply in non-human primates (NHPs). A major challenge is delivering intense and spatially precise patterned photostimulation across large volumes in deep tissue. Here, we have developed and validated the Utah Optrode Array (UOA) to meet this critical need. The UOA is a 10×10 glass waveguide array bonded to an electrically-addressable µLED array. In vivo electrophysiology and immediate early gene (c-fos) immunohistochemistry demonstrated the UOA allows for large-scale spatiotemporally precise neuromodulation of deep tissue in macaque primary visual cortex. Specifically, the UOA permits both focal (single layers or columns), and large-scale (across multiple layers or columns) photostimulation of deep cortical layers, simply by varying the number of simultaneously activated µLEDs and/or the light irradiance. These results establish the UOA as a powerful tool for studying targeted neural populations within single or across multiple deep layers in complex NHP circuits.

6.
Opt Mater Express ; 12(3): 895-906, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35993007

RESUMO

We characterize three commercial resins suitable for three-dimensional two-photon printing of mm3 volume micro-optical components for visible light - IP-S, IP-n162, and IP-Visio - under different print modes and post-processing conditions. Due to the combination of cured resin absorption and bulk scattering, we find a maximum total printed thickness of 4 mm (or greater) for at least 50% transmittance of red light, up to 2 mm for green light, and large maximum thickness variation for blue light (0.1 to 1 mm).

7.
ACS Appl Mater Interfaces ; 12(47): 52538-52548, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179501

RESUMO

Solution-processable two-dimensional (2D) organic-inorganic hybrid perovskite (OIHP) quantum wells naturally self-assemble through weak van der Waals forces. In this study, we investigate the structural and optoelectronic properties of 2D-layered butylammonium (C4H9NH3+, BA+) methylammonium (CH3NH3+, MA) lead iodide, (BA)2(MA)n-1PbnI3n+1 quantum wells with varying n from 1 to 4. Through conventional structural characterization, (BA)2(MA)n-1PbnI3n+1 thin films showcase high-quality phase (n) purity. However, while investigating the optoelectronic properties, it is clear that these van der Waals heterostructures consist of multiple quantum well thicknesses coexisting within a single thin film. We utilized electroabsorption spectroscopy and Liptay theory to develop an analytical tool capable of deconvoluting the excitonic features that arise from different quantum well thicknesses (n) in (BA)2(MA)n-1PbnI3n+1 thin films. To obtain a quantitative assessment of exciton heterogeneities within a thin film comprising multiple quantum well structures, exciton resonances quantified by absorption spectroscopy were modeled as Gaussian features to yield various theory-generated electroabsorption spectra, which were then fit to our experimental electroabsorption features. In addition to identifying the quantum well heterostructures present within a thin film, this novel analytical tool provides powerful insights into the exact exciton composition and can be utilized to analyze the optoelectronic properties of many other mixed-phase quantum well heterostructures beyond those formed by OIHPs. Our findings may help in designing more efficient and reproducible light-emitting diodes based on 2D mixed-phase metal-organic multiple quantum wells.

8.
Opt Lett ; 45(16): 4642-4645, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32797030

RESUMO

Aluminum (Al) is a preferred metal for designing deep-ultraviolet (DUV) surface plasmon resonance (SPR)-based sensors. The native oxide layer (alumina), which grows when the Al film is exposed to air, adds an extra layer to the multilayer stack and consequently affects the DUV-SPR sensing performance. To mitigate the performance loss in DUV-SPR-based sensing, new, to the best of our knowledge, approaches are considered here. We first consider chromium, indium (In), nickel, and platinum as alternative plasmonic materials to Al. In-film-based DUV-SPR sensors exhibit the best performance parameters compared to these alternative materials. We next consider the approach of replacing the native oxide layer by an ultrathin gold (Au) layer on top of bare Al or In. With an optimal Au thickness, higher sensitivity as compared to oxidized metals is observed. The next approach adds one or more graphene layers on top of the bare metal film. In this case, the performance depends on the number of graphene layers, but improvement in sensor characteristics in the DUV is also obtained. The use of Au or graphene overlayers increases the refractive index sensing dynamic range, which can be significant for In with these overlayers under certain operating conditions.

9.
Nano Lett ; 20(5): 3656-3662, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315534

RESUMO

Manipulation of plasmon modes at ultraviolet wavelengths using engineered nanophotonic devices allows for the development of high-sensitivity chiroptical spectroscopy systems. We present here an experimental framework based on aluminum-based crescent-shaped nanostructures that exhibit a strong chiroptical response at ultraviolet wavelengths. Through utilization of higher-order plasmon modes in wavelength-scale nanostructures, we address the inherent fabrication challenges in scaling the response to higher frequencies. Additionally, the distinct far-field spectral response types are analyzed within a coupled-oscillator model framework. We find two competing chiroptical response types that contribute toward potential ambiguity in the interpretation of the circular dichroism spectra. The first, optical activity, originates from the interaction between hybridized eigenmodes, whereas the second manifests as a response superficially similar to optical activity but originating instead from differential near-field absorption modes. The study of the chiroptical response from nanoplasmonic devices presented here is expected to aid the development of next-generation chiroptical spectroscopy systems.

10.
Nat Commun ; 11(1): 323, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949152

RESUMO

The two-dimensional (2D) Ruddlesden-Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting ('Rashba splitting') occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.

11.
Neurophotonics ; 6(3): 035010, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528655

RESUMO

We present an electrically addressable optrode array capable of delivering light to 181 sites in the brain, each providing sufficient light to optogenetically excite thousands of neurons in vivo, developed with the aim to allow behavioral studies in large mammals. The device is a glass microneedle array directly integrated with a custom fabricated microLED device, which delivers light to 100 needle tips and 81 interstitial surface sites, giving two-level optogenetic excitation of neurons in vivo. Light delivery and thermal properties are evaluated, with the device capable of peak irradiances > 80 mW / mm 2 per needle site. The device consists of an array of 181 80 µ m × 80 µ m 2 microLEDs, fabricated on a 150 - µ m -thick GaN-on-sapphire wafer, coupled to a glass needle array on a 150 - µ m thick backplane. A pinhole layer is patterned on the sapphire side of the microLED array to reduce stray light. Future designs are explored through optical and thermal modeling and benchmarked against the current device.

12.
ACS Nano ; 13(4): 4091-4100, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30865427

RESUMO

Three-dimensional (3D) semimetals have been predicted and demonstrated to have a wide variety of interesting properties associated with their linear energy dispersion. In analogy to two-dimensional (2D) Dirac semimetals, such as graphene, Cd3As2 has shown ultrahigh mobility and large Fermi velocity and has been hypothesized to support plasmons at terahertz frequencies. In this work, we experimentally demonstrate synthesis of high-quality large-area Cd3As2 thin films through thermal evaporation as well as the experimental realization of plasmonic structures consisting of periodic arrays of Cd3As2 stripes. These arrays exhibit sharp resonances at terahertz frequencies with associated quality factors ( Q) as high as ∼3.7 (at 0.82 THz). Such spectrally narrow resonances can be understood on the basis of a long momentum scattering time, which in our films can approach ∼1 ps at room temperature. Moreover, we demonstrate an ultrafast tunable response through excitation of photoinduced carriers in optical pump/terahertz probe experiments. Our results evidence that the intrinsic 3D nature of Cd3As2 might provide for a very robust platform for terahertz plasmonic applications. Moreover, the long momentum scattering time as well as large kinetic inductance in Cd3As2 also holds enormous potential for the redesign of passive elements such as inductors and hence can have a profound impact in the field of RF integrated circuits.

13.
Sci Rep ; 8(1): 18075, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30584263

RESUMO

We report polarization dependent photoluminescence studies on unintentionally-, Mg-, and Ca-doped ß-Ga2O3 bulk crystals grown by the Czochralski method. In particular, we observe a wavelength shift of the highest-energy UV emission which is dependent on the pump photon energy and polarization. For 240 nm (5.17 eV) excitation almost no shift of the UV emission is observed between E||b and E||c, while a shift of the UV emission centroid is clearly observed for 266 nm (4.66 eV), a photon energy lying between the band absorption onsets for the two polarizations. These results are consistent with UV emission originating from transitions between conduction band electrons and two differentially-populated self-trapped hole (STH) states. Calcuations based on hybrid and self-interaction-corrected density functional theories further validate that the polarization dependence is consistent with the relative stability of two STHs. This observation implies that the STHs form primarily at the oxygen atoms involved in the original photon absorption event, thus providing the connection between incident polarization and emission wavelength. The data imposes a lower bound on the energy separation between the self-trapped hole states of ~70-160 meV, which is supported by the calculations.

14.
Sci Rep ; 8(1): 3577, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476173

RESUMO

We report on terahertz characterization of La-doped BaSnO3 (BSO) thin-films. BSO is a transparent complex oxide material, which has attracted substantial interest due to its large electrical conductivity and wide bandgap. The complex refractive index of these films is extracted in the 0.3 to 1.5 THz frequency range, which shows a metal-like response across this broad frequency window. The large optical conductivity found in these films at terahertz wavelengths makes this material an interesting platform for developing electromagnetic structures having a strong response at terahertz wavelengths, i.e. terahertz-functional, while being transparent at visible and near-IR wavelengths. As an example of such application, we demonstrate a visible-transparent terahertz polarizer.

15.
Neurophotonics ; 4(4): 041502, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28721358

RESUMO

As the optogenetic field expands, the need for precise targeting of neocortical circuits only grows more crucial. This work demonstrates a technique for using Solidworks® computer-aided design (CAD) and readily available stereotactic brain atlases to create a three-dimensional (3-D) model of the dorsal region of area visual cortex 4 (V4D) of the macaque monkey (Macaca fascicularis) visual cortex. The 3-D CAD model of the brain was used to customize an [Formula: see text] Utah optrode array (UOA) after it was determined that a high-density ([Formula: see text]) UOA caused extensive damage to marmoset (Callithrix jacchus) primary visual cortex as assessed by electrophysiological recording of spiking activity through a 1.5-mm-diameter through glass via. The [Formula: see text] UOA was customized for optrode length ([Formula: see text]), optrode width ([Formula: see text]), optrode pitch ([Formula: see text]), backplane thickness ([Formula: see text]), and overall form factor ([Formula: see text]). Two [Formula: see text] UOAs were inserted into layer VI of macaque V4D cortices with minimal damage as assessed in fixed tissue cytochrome oxidase staining in nonrecoverable surgeries. Additionally, two [Formula: see text] arrays were implanted in mice (Mus musculus) motor cortices, providing early evidence for long-term tolerability (over 6 months), and for the ability to integrate the UOA with a Holobundle light delivery system toward patterned optogenetic stimulation of cortical networks.

16.
Biomed Microdevices ; 18(6): 115, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27943003

RESUMO

Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100µ m × 100µ m optrodes and a 500µ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.


Assuntos
Compostos de Cálcio/química , Vidro/química , Microtecnologia/instrumentação , Sistema Nervoso , Optogenética/instrumentação , Óxidos/química , Hidróxido de Sódio/química , Impressão Tridimensional
17.
J Clin Neurosci ; 28: 71-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26935748

RESUMO

Previous evidence suggests optical treatments hold promise for treating migraine and photophobia. We designed an optical notch filter, centered at 480nm to reduce direct stimulation of intrinsically photosensitive retinal ganglion cells. We used thin-film technology to integrate the filter into spectacle lenses. Our objective was to determine if an optical notch filter, designed to attenuate activity of intrinsically photosensitive retinal ganglion cells, could reduce headache impact in chronic migraine subjects. For this randomized, double-masked study, our primary endpoint was the Headache Impact Test (HIT-6; GlaxoSmithKline, Brentford, Middlesex, UK). We developed two filters: the therapeutic filter blocked visible light at 480nm; a 620nm filter was designed as a sham. Participants were asked to wear lenses with one of the filters for 2weeks; after 2weeks when no lenses were worn, they wore lenses with the other filter for 2weeks. Of 48 subjects, 37 completed the study. Wearing either the 480 or 620nm lenses resulted in clinically and statistically significant HIT-6 reductions. However, there was no significant difference when comparing overall effect of the 480 and 620nm lenses. Although the 620nm filter was designed as a sham intervention, research published following the trial indicated that melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, is bi-stable. This molecular property may explain the unexpected efficacy of the 620nm filter. These preliminary findings indicate that lenses outfitted with a thin-film optical notch filter may be useful in treating chronic migraine.


Assuntos
Desenho de Equipamento , Óculos , Luz/efeitos adversos , Transtornos de Enxaqueca/prevenção & controle , Fotofobia/prevenção & controle , Células Ganglionares da Retina/fisiologia , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/complicações , Fotofobia/etiologia , Resultado do Tratamento , Adulto Jovem
18.
J Phys Chem C Nanomater Interfaces ; 120(50): 28727-28734, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28725334

RESUMO

The interaction of fluorophores with nearby metallic structures is now an active area of research. Dielectric photonic structures offer some advantages over plasmonic structures, namely small energy losses and less quenching. We describe a dielectric one-dimensional photonic crystal (1DPC), which supports Bloch surface waves (BSWs) from 280 to 440 nm. This BSW structure is a quartz slide coated with alternating layers of SiO2 and Si3N4. We show that this structure displays BSWs and that the near-UV fluorophore, 2-aminopurine (2-AP), on the top surface of the structure couples with the BSWs. Fluorophores do not have to be inside the structure for coupling and show a narrow angular distribution, with an angular separation of wavelengths. The Bloch wave-coupled emission (BWCE) radiates through the dielectric layer. These BSW structures, with useful wavelength range for detection of intrinsic protein and cofactor fluorescence, provide opportunities for novel optical configurations for bioassays with surface-localized biomolecules and for optical imaging using the coupled emission.

19.
Prog Cardiovasc Dis ; 57(4): 330-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25459976

RESUMO

Health authorities worldwide recommend weight loss as a primary endpoint for effective obesity management. Despite a growing public awareness of the importance of weight loss and the spending of billions of dollars by Americans in attempts to lose weight, obesity prevalence continues to rise. In this report we argue that effective obesity management in today's environment will require a shift in focus from weight loss as the primary endpoint, to improvements in the causal behaviors; diet and exercise/physical activity (PA). We reason that increases in PA combined with a balanced diet are associated with improvement in many of the intermediate risk factors including cardiorespiratory fitness (CRF) associated with obesity despite minimal or no weight loss. Consistent with this notion, we suggest that a focus on healthy behaviors for the prevention of additional weight gain may be an effective way of managing obesity in the short term.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dietoterapia , Determinação de Ponto Final/métodos , Comportamentos Relacionados com a Saúde , Atividade Motora , Obesidade , Aptidão Física , Adulto , Índice de Massa Corporal , Doenças Cardiovasculares/etiologia , Dietoterapia/métodos , Dietoterapia/psicologia , Gerenciamento Clínico , Exercício Físico , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Feminino , Humanos , Masculino , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/psicologia , Obesidade/terapia , Aptidão Física/fisiologia , Aptidão Física/psicologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento de Redução do Risco , Redução de Peso
20.
J Phys Condens Matter ; 26(50): 505302, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25419653

RESUMO

Using first-principles calculations, we show manifestations of the quantum size effect in the dielectric function ε(2) of free-standing Al(1 1 1) ultrathin films of 1 monolayer to 20 monolayers, taking into account size dependent contributions from both interband and intraband electronic transitions. Overall the in-plane components (interband transition) of ε(2) increase with film thickness at all frequencies, converging towards a constant value. However, the out-of-plane components of ε(2) show a more complex behavior, and, only at frequencies less than 0.75 eV, increase with film thickness without convergence. This suggests that ultrathin films can possibly be used for low-loss plasmonics devices in the visible and ultraviolet range. Our findings may shed light on searching for low-loss plasmonic materials via quantum size effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...