Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 57(22): 3155-3166, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29381332

RESUMO

Thiolases are a class of carbon-carbon bond forming enzymes with important applications in biotechnology and metabolic engineering as they provide a general method for the condensation of two acyl coenzyme A (CoA) substrates. As such, developing a greater understanding of their substrate selectivity would expand our ability to engineer the enzymatic or microbial production of a broad range of small-molecule targets. Here, we report the crystal structures and biochemical characterization of Acat2 and Acat5, two biosynthetic thiolases from Ascaris suum with varying selectivity toward branched compared to linear compounds. The structure of the Acat2-C91S mutant bound to propionyl-CoA shows that the terminal methyl group of the substrate, representing the α-branch point, is directed toward the conserved Phe 288 and Met 158 residues. In Acat5, the Phe ring is rotated to accommodate a hydroxyl-π interaction with an adjacent Thr side chain, decreasing space in the binding pocket and possibly accounting for its strong preference for linear substrates compared to Acat2. Comparison of the different Acat thiolase structures shows that Met 158 is flexible, adopting alternate conformations with the side chain rotated toward or away from a covering loop at the back of the active site. Mutagenesis of residues in the covering loop in Acat5 with the corresponding residues from Acat2 allows for highly increased accommodation of branched substrates, whereas the converse mutations do not significantly affect Acat2 substrate selectivity. Our results suggest an important contribution of second-shell residues to thiolase substrate selectivity and offer insights into engineering this enzyme class.


Assuntos
Acetil-CoA C-Aciltransferase/metabolismo , Ascaris suum/enzimologia , Acetil-CoA C-Aciltransferase/fisiologia , Sequência de Aminoácidos , Animais , Ascaris suum/fisiologia , Sítios de Ligação , Domínio Catalítico/fisiologia , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato/fisiologia
2.
J Am Chem Soc ; 139(41): 14526-14532, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28990776

RESUMO

Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Hidroxiácidos/metabolismo , Escherichia coli/metabolismo , Hidroliases/metabolismo , Propionatos/metabolismo
3.
ACS Synth Biol ; 6(2): 206-210, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27676450

RESUMO

Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.


Assuntos
Glucosiltransferases/metabolismo , Mutação/genética , Xilose/genética , Xilose/metabolismo , Biocombustíveis , Biomassa , Domínio Catalítico/genética , Celobiose/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Glucose/metabolismo , Oligossacarídeos/metabolismo , Engenharia de Proteínas/métodos , Leveduras/genética , Leveduras/metabolismo
4.
J Am Chem Soc ; 132(50): 17840-8, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21105659

RESUMO

Here we present a new bifunctional layer-by-layer (LbL) construct made by combining a permanent microbicidal polyelectrolyte multilayered (PEM) base film with a hydrolytically degradable PEM top film that offers controlled and localized delivery of therapeutics. Two degradable film architectures are presented: (1) bolus release of an antibiotic (gentamicin) to eradicate initial infection at the implant site, or (2) sustained delivery of an anti-inflammatory drug (diclofenac) to cope with inflammation at the site of implantation due to tissue injury. Each degradable film was built on top of a permanent base film that imparts the implantable device surface with microbicidal functionality that prevents the formation of biofilms. Controlled-delivery of gentamicin was demonstrated over hours and that of diclofenac over days. Both drugs retained their efficacy upon release. The permanent microbicidal base film was biocompatible with A549 epithelial cancer cells and MC3T3-E1 osteoprogenitor cells, while also preventing bacteria attachment from turbid media for the entire duration of the two weeks studied. The microbicidal base film retains its functionality after the biodegradable films have completely degraded. The versatility of these PEM films and their ability to prevent biofilm formation make them attractive as coatings for implantable devices.


Assuntos
Materiais Revestidos Biocompatíveis/química , Diclofenaco/farmacologia , Gentamicinas/farmacologia , Polímeros/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada , Implantes de Medicamento , Humanos , Modelos Biológicos , Estrutura Molecular , Propriedades de Superfície
5.
Biomaterials ; 31(23): 6019-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20488534

RESUMO

While the infection rate of orthopedic implants is low, the required treatment, which can involve six weeks of antibiotic therapy and two additional surgical operations, is life threatening and expensive, and thus motivates the development of a one-stage re-implantation procedure. Polyelectrolyte multilayers incorporating gentamicin were fabricated using the layer-by-layer deposition process for use as a device coating to address an existing bone infection in a direct implant exchange operation. The films eluted about 70% of their payload in vitro during the first three days and subsequently continued to release drug for more than four additional weeks, reaching a total average release of over 550 microg/cm(2). The coatings were demonstrated to be bactericidal against Staphylococcus aureus, and degradation products were generally nontoxic towards MC3T3-E1 murine preosteoblasts. Film-coated titanium implants were compared to uncoated implants in an in vivo S. aureus bone infection model. After a direct exchange procedure, the antimicrobial-coated devices yielded bone homogenates with a significantly lower degree of infection than uncoated devices at both day four (p < 0.004) and day seven (p < 0.03). This study has demonstrated that a self-assembled ultrathin film coating is capable of effectively treating an experimental bone infection in vivo and lays the foundation for development of a multi-therapeutic film for optimized, synergistic treatment of pain, infection, and osteomyelitis.


Assuntos
Antibacterianos/administração & dosagem , Modelos Animais de Doenças , Eletrólitos , Gentamicinas/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/isolamento & purificação , Animais , Antibacterianos/uso terapêutico , Gentamicinas/uso terapêutico , Testes de Sensibilidade Microbiana , Coelhos , Infecções Estafilocócicas/microbiologia , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...