Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38054369

RESUMO

There is a regulatory need for crop development dates to assess current default values used within chemical exposure assessments as well as to justify refinements within risk assessments. However, a readily available pan-European crop phenology database covering key FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) crops and scenarios to meet this need is not currently available. Therefore, we describe the development of a harmonized, pan-European, CropLife Europe Crop Development Database (C2D2), that is fully aligned with this regulatory requirement utilizing efficacy trials data generated for regulatory submissions when registering plant protection products under Regulation (EU)1107/2009. Evaluation of C2D2 against an independent data set showed good agreement for equivalent time periods, crop growth stages, and geographical regions. We illustrate how this database can be used to evaluate existing default crop development dates mandated by regulatory agencies for use within exposure assessments. Despite the large data set compiled and the geographical coverage of C2D2, not all FOCUSsw/gw scenarios have sufficient data to facilitate comparison, with less significant scenarios, like FOCUSgw Porto, being underrepresented. For those scenarios with sufficient data, clear differences between C2D2 and crop development dates assumed in the FOCUS modeling framework (using the AppDate tool) are often indicated over many growth stages, suggesting that amendment of the existing representation of crop development within the risk assessment process may be required. C2D2 is freely available under a Creative Commons license to facilitate innovation in exposure science to allow for more accurate and realistic risk assessment leading to enhanced crop and environmental protection. Integr Environ Assess Manag 2023;00:1-15. © 2023 CropLife Europe (Corteva Agriscience) and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
Elife ; 102021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33588990

RESUMO

Adaptation to shifting temperatures is crucial for the survival of the bacterial pathogen Vibrio cholerae. Here, we show that colony rugosity, a biofilm-associated phenotype, is regulated by temperature in V. cholerae strains that naturally lack the master biofilm transcriptional regulator HapR. Using transposon-insertion mutagenesis, we found the V. cholerae ortholog of BipA, a conserved ribosome-associated GTPase, is critical for this temperature-dependent phenomenon. Proteomic analyses revealed that loss of BipA alters the synthesis of >300 proteins in V. cholerae at 22°C, increasing the production of biofilm-related proteins including the key transcriptional activators VpsR and VpsT, as well as proteins important for diverse cellular processes. At low temperatures, BipA protein levels increase and are required for optimal ribosome assembly in V. cholerae, suggesting that control of BipA abundance is a mechanism by which bacteria can remodel their proteomes. Our study reveals a remarkable new facet of V. cholerae's complex biofilm regulatory network.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , GTP Fosfo-Hidrolases/genética , Vibrio cholerae/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/metabolismo , Fenótipo , Temperatura , Vibrio cholerae/genética
3.
PLoS One ; 12(1): e0170999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125734

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate mRNA expression mainly by silencing target transcripts via binding to miRNA recognition elements (MREs) in the 3'untranslated region (3'UTR). The identification of bona fide targets is challenging for researchers working on the functional aspect of miRNAs. Recently, we developed a method (miR-CATCH) based on biotinylated DNA antisense oligonucleotides that capture the mRNA of interest and facilitates the characterisation of miRNAs::mRNA interactions in a physiological cellular context. Here, the miR-CATCH technique was applied to the mesothelin (MSLN) gene and coupled with next generation sequencing (NGS), to identify miRNAs that regulate MSLN mRNA and that may be responsible for its increased protein levels found in malignant pleural mesothelioma (MPM). Biotinylated MSLN oligos were employed to isolate miRNA::MSLN mRNA complexes from a normal cell line (Met-5A) which expresses low levels of MSLN. MiRNAs targeting the MSLN mRNA were identified by NGS and miR-21-5p and miR-100-5p were selected for further validation analyses. MiR-21-5p was shown to be able to modulate MSLN expression in miRNA mimic experiments in a panel of malignant and non-malignant cell lines. Further miRNA inhibitor experiments and luciferase assays in Mero-14 cells validated miR-21-5p as a true regulator of MSLN. Moreover, in vitro experiments showed that treatment with miR-21-5p mimic reduced proliferation of MPM cell lines. Altogether, this work shows that the miR-CATCH technique, coupled with NGS and in vitro validation, represents a reliable method to identify native miRNA::mRNA interactions. MiR-21-5p is suggested as novel regulator of MSLN with a possible functional role in cellular growth.


Assuntos
Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Ligadas por GPI/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mesotelina , MicroRNAs/metabolismo
4.
Aging Cell ; 16(1): 183-191, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27785870

RESUMO

Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence-associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence-associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic-Senescence-Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar-coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2  = 0.67) and HUVECs (R2  = 0.97). However, when we analyzed the Epigenetic-Senescence-Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence-associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co-regulated. They rather appear to be acquired stochastically-potentially evoked by other epigenetic modifications.


Assuntos
Senescência Celular/genética , Metilação de DNA/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Sequência de Bases , Diferenciação Celular/genética , Células Clonais , Ilhas de CpG/genética , Epigênese Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Análise de Sequência de DNA , Processos Estocásticos , Sulfitos/metabolismo
5.
PLoS One ; 9(3): e90894, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625750

RESUMO

Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.


Assuntos
Aberrações Cromossômicas , Transtornos do Neurodesenvolvimento/genética , Transtorno Bipolar/genética , Pré-Escolar , Consanguinidade , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Testes de Inteligência , Cariotipagem , Fatores de Transcrição Kruppel-Like/genética , Transtornos do Desenvolvimento da Linguagem , Imageamento por Ressonância Magnética , Masculino , Complexo de Endopeptidases do Proteassoma/genética , Esquizofrenia/genética , Análise de Sequência de DNA , Transativadores/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-23760605

RESUMO

Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin. Here, we examined the role of microRNAs (miRNAs) as a potential mechanism in the regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament assembly to prolong its intracellular survival inside host cells, we performed a global transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis infection of the murine Mφ cell line, J774A.1. This approach identified miR-142-3p as a key candidate to be involved in the regulation of actin dynamics required in phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an actin-binding protein required during microbial challenge. A gain-of-function approach for miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of the phagocytosis process. Equally important, we show Mtb induces the early expression of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine J774A.1 cell line and primary human Mφs. As proof of principle, the partial siRNA-mediated knock down of N-Wasp resulted in a decrease of Mtb intake by human Mφs, reflected in lower levels of colony-forming units (CFU) counts over time. We therefore propose the modulation of miRNAs as a novel strategy in mycobacterial infection to control factors involved in actin filament assembly and other early events of phagolysosome biogenesis.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Mycobacterium tuberculosis/imunologia , Fagocitose , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética
7.
Eur J Hum Genet ; 21(10): 1177-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23422942

RESUMO

Most balanced chromosomal aberrations are not associated with a clinical phenotype, however, in some patients they may disrupt gene structure. With the development of various next-generation sequencing techniques, fast and specific analyses of the breakpoint regions of chromosomal rearrangements are possible. Here, we report on a 19-year-old woman with a de novo balanced translocation t(2;8)(p13.2;q22.1) and a severe clinical phenotype including intellectual disability, epilepsy, behavioral features resembling autism, and minor dysmorphic features. By next-generation sequencing, we defined the breakpoints and found disruption of the exocyst complex component 6B (EXOC6B) gene in intron 1 on chromosome 2p13.2 involving two Alu elements with a homology of 81%. No gene was found at the respective breakpoint on chromosome 8. Expression analysis of the EXOC6B in blood lymphocytes and buccal smear revealed reduced expression in the patient in comparison with the control. Our findings in combination with one recently published case and one other patient listed in DECIPHER v5.1 indicate EXOC6B as a gene relevant for intellectual development and electrophysiological stability.


Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Proteínas de Ligação ao GTP/genética , Translocação Genética , Anormalidades Múltiplas/metabolismo , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 8/genética , Deficiências do Desenvolvimento/metabolismo , Epilepsia/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Linfócitos/metabolismo , Mucosa Bucal/metabolismo , Síndrome , Adulto Jovem
8.
Anal Chem ; 84(15): 6863-8, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22861009

RESUMO

The abuse of anabolic substances in animal husbandry is forbidden within the EU and well controlled by detecting substance residues in different matrices. The application of newly designed drugs or substance cocktails represents big problems. Therefore developing sensitive test methods is important. The analysis of physiological changes caused by the use of anabolic agents on the molecular level, for example, by quantifying gene expression response, is a new approach to develop such screening methods. A novel technology for holistic gene expression analysis is RNA sequencing. In this study, the potential of this high-throughput method for the identification of biomarkers was evaluated. The effect of trenbolone acetate plus estradiol on gene expression in liver from Nguni heifers was analyzed with RNA sequencing. The expression of 40 selected candidate genes was verified via RT-qPCR, whereby 20 of these genes were significantly regulated. To extract the intended information from these regulated genes, biostatistical tools for pattern recognition were applied and resulted in a clear separation of the treatment groups. Those candidate genes could be verified in boars and in calves treated with anabolic substances. These results show the potential of RNA sequencing to screen for biomarker candidates to detect the abuse of anabolics. The verification of these biomarkers in boars and calves leads to the assumption that gene expression biomarkers are independent of breed or even species and that biomarkers, identified in farm animals could also act as potential biomarker candidates to detect the abuse of anabolic substances in human sports.


Assuntos
Anabolizantes/farmacologia , Análise de Sequência de RNA , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Dopagem Esportivo , Estradiol/farmacologia , Cavalos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Análise de Componente Principal , Transcriptoma , Acetato de Trembolona/farmacologia
9.
Nat Cell Biol ; 14(7): 764-74, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660414

RESUMO

The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.


Assuntos
Endocitose/genética , Redes Reguladoras de Genes , Complexo de Golgi/metabolismo , Interferência de RNA , Vesículas Secretórias/metabolismo , Vesículas Transportadoras/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Clonagem Molecular , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Fatores de Tempo , Transfecção
10.
Cell ; 148(1-2): 59-71, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265402

RESUMO

Genomic rearrangements are thought to occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving massive chromosome rearrangements in a one-step catastrophic event termed chromothripsis. We report the whole-genome sequencing-based analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome), uncovering massive, complex chromosome rearrangements. Integrating TP53 status with microarray and deep sequencing-based DNA rearrangement data in additional patients reveals a striking association between TP53 mutation and chromothripsis in SHH-MBs. Analysis of additional tumor entities substantiates a link between TP53 mutation and chromothripsis, and indicates a context-specific role for p53 in catastrophic DNA rearrangements. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia. These findings connect p53 status and chromothripsis in specific tumor types, providing a genetic basis for understanding particularly aggressive subtypes of cancer.


Assuntos
Neoplasias Encefálicas/genética , Rearranjo Gênico , Meduloblastoma/genética , Proteína Supressora de Tumor p53/genética , Animais , Criança , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/genética , Síndrome de Li-Fraumeni/fisiopatologia , Camundongos , Pessoa de Meia-Idade
11.
Chest ; 141(4): 886-894, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22016489

RESUMO

BACKGROUND: B cells play an important role in allergic asthma. However, the mechanisms by which these cells are activated in the airways remain poorly understood. METHODS: We used a mouse model of ovalbumin (OVA)-induced allergic inflammation to study CXCL13 and to investigate the concentration of this chemokine in the BAL fluid derived from asthmatic and normal control subjects. RESULTS: We found that OVA-challenged mice upregulate the CXCL13/CXCR5 axis, which is associated with several changes in their airways, including recruitment of B and CD4(+) cells, development of bronchial-associated lymphoid tissue, and airway inflammation. Treating sensitized mice with an anti-CXCL13 antibody reduced cell recruitment, bronchial-associated lymphoid tissue formation, and airways inflammation. Interestingly, measurements of CXCL13 using enzyme-linked immunosorbent assay showed that levels of this cytokine were significantly elevated in BAL fluid from subjects with asthma compared with control subjects (median, 162 [range, 120-296] vs 31 [range, 120-156] pg/mL; P = .005). CONCLUSIONS: All together, these findings suggest that CXCL13 is involved in the allergic airway inflammatory process, and targeting this chemokine may constitute a novel approach in asthma.


Assuntos
Asma/tratamento farmacológico , Asma/fisiopatologia , Quimiocina CXCL13/fisiologia , Adolescente , Adulto , Animais , Anticorpos/imunologia , Linfócitos B/fisiologia , Líquido da Lavagem Broncoalveolar/química , Quimiocina CXCL13/análise , Quimiocina CXCL13/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Adulto Jovem
12.
Blood ; 118(22): e168-79, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21940823

RESUMO

Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.


Assuntos
Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Reguladoras de Ferro/fisiologia , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Proteoma/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/fisiologia
13.
Cancer Genet Cytogenet ; 196(2): 109-18, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20082845

RESUMO

With the use of genome-wide cDNA microarrays, we investigated the transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. In all, 1,098 chip entries were differentially regulated in the two cell lines; of these, 796 entries corresponded to characterized mRNAs. The identified genes are mostly expressed in epithelial tissues and localize on chromosomes 1, 10, and 20. Furthermore, signaling cascades for cell cycle, glycolysis, and gluconeogenesis, the p53 pathway, cell communication, and focal adhesion were found to be differently regulated in the two cell lines. The transcriptome profiles reported here provide novel information about the considerable molecular differences between these two widely used human osteosarcoma cell lines.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica , Osteossarcoma/genética , RNA Mensageiro/genética , Sequência de Bases , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Primers do DNA , DNA Complementar , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/patologia , Reação em Cadeia da Polimerase
14.
PLoS One ; 4(6): e5846, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19513108

RESUMO

The regenerative potential diminishes with age and this has been ascribed to functional impairments of adult stem cells. Cells in culture undergo senescence after a certain number of cell divisions whereby the cells enlarge and finally stop proliferation. This observation of replicative senescence has been extrapolated to somatic stem cells in vivo and might reflect the aging process of the whole organism. In this study we have analyzed the effect of aging on gene expression profiles of human mesenchymal stromal cells (MSC) and human hematopoietic progenitor cells (HPC). MSC were isolated from bone marrow of donors between 21 and 92 years old. 67 genes were age-induced and 60 were age-repressed. HPC were isolated from cord blood or from mobilized peripheral blood of donors between 27 and 73 years and 432 genes were age-induced and 495 were age-repressed. The overlap of age-associated differential gene expression in HPC and MSC was moderate. However, it was striking that several age-related gene expression changes in both MSC and HPC were also differentially expressed upon replicative senescence of MSC in vitro. Especially genes involved in genomic integrity and regulation of transcription were age-repressed. Although telomerase activity and telomere length varied in HPC particularly from older donors, an age-dependent decline was not significant arguing against telomere exhaustion as being causal for the aging phenotype. These studies have demonstrated that aging causes gene expression changes in human MSC and HPC that vary between the two different cell types. Changes upon aging of MSC and HPC are related to those of replicative senescence of MSC in vitro and this indicates that our stem and progenitor cells undergo a similar process also in vivo.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Senescência Celular , Feminino , Humanos , Imunofenotipagem/métodos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
15.
Breast Cancer Res ; 11(3): R27, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19432961

RESUMO

INTRODUCTION: Breast cancer is a heterogeneous disease encompassing a number of phenotypically diverse tumours. Expression levels of the oestrogen, progesterone and HER2/neu receptors which characterize clinically distinct breast tumours have been shown to change during disease progression and in response to systemic therapies. Mi(cro)RNAs play critical roles in diverse biological processes and are aberrantly expressed in several human neoplasms including breast cancer, where they function as regulators of tumour behaviour and progression. The aims of this study were to identify miRNA signatures that accurately predict the oestrogen receptor (ER), progesterone receptor (PR) and HER2/neu receptor status of breast cancer patients to provide insight into the regulation of breast cancer phenotypes and progression. METHODS: Expression profiling of 453 miRNAs was performed in 29 early-stage breast cancer specimens. miRNA signatures associated with ER, PR and HER2/neu status were generated using artificial neural networks (ANN), and expression of specific miRNAs was validated using RQ-PCR. RESULTS: Stepwise ANN analysis identified predictive miRNA signatures corresponding with oestrogen (miR-342, miR-299, miR-217, miR-190, miR-135b, miR-218), progesterone (miR-520g, miR-377, miR-527-518a, miR-520f-520c) and HER2/neu (miR-520d, miR-181c, miR-302c, miR-376b, miR-30e) receptor status. MiR-342 and miR-520g expression was further analysed in 95 breast tumours. MiR-342 expression was highest in ER and HER2/neu-positive luminal B tumours and lowest in triple-negative tumours. MiR-520g expression was elevated in ER and PR-negative tumours. CONCLUSIONS: This study demonstrates that ANN analysis reliably identifies biologically relevant miRNAs associated with specific breast cancer phenotypes. The association of specific miRNAs with ER, PR and HER2/neu status indicates a role for these miRNAs in disease classification of breast cancer. Decreased expression of miR-342 in the therapeutically challenging triple-negative breast tumours, increased miR-342 expression in the luminal B tumours, and downregulated miR-520g in ER and PR-positive tumours indicates that not only is dysregulated miRNA expression a marker for poorer prognosis breast cancer, but that it could also present an attractive target for therapeutic intervention.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Redes Neurais de Computação , Análise de Sequência com Séries de Oligonucleotídeos
16.
Blood ; 113(18): 4331-40, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19171872

RESUMO

Genetic instability and cellular proliferation have been associated with aurora kinase expression in several cancer entities, including multiple myeloma. Therefore, the expression of aurora-A, -B, and -C was determined by Affymetrix DNA microarrays in 784 samples including 2 independent sets of 233 and 345 CD138-purified myeloma cells from previously untreated patients. Chromosomal aberrations were assessed by comprehensive interphase fluorescence in situ hybridization and proliferation of primary myeloma cells by propidium iodine staining. We found aurora-A and -B to be expressed at varying frequencies in primary myeloma cells of different patient cohorts, but aurora-C in testis cell samples only. Myeloma cell samples with detectable versus absent aurora-A expression show a significantly higher proliferation rate, but neither a higher absolute number of chromosomal aberrations (aneuploidy), nor of subclonal aberrations (chromosomal instability). The clinical aurora kinase inhibitor VX680 induced apoptosis in 20 of 20 myeloma cell lines and 5 of 5 primary myeloma cell samples. Presence of aurora-A expression delineates significantly inferior event-free and overall survival in 2 independent cohorts of patients undergoing high-dose chemotherapy, independent from conventional prognostic factors. Using gene expression profiling, aurora kinase inhibitors as a promising therapeutic option in myeloma can be tailoredly given to patients expressing aurora-A, who in turn have an adverse prognosis.


Assuntos
Apoptose/efeitos dos fármacos , Mieloma Múltiplo/patologia , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Aurora Quinase C , Aurora Quinases , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Proliferação de Células , Aberrações Cromossômicas , Terapia Combinada , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/terapia , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Transplante de Células-Tronco , Transplante Autólogo , Células Tumorais Cultivadas
17.
PLoS One ; 3(5): e2213, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18493317

RESUMO

Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. These cells are usually culture expanded prior to their application. However, a precise molecular definition of MSC and the sequel of long-term in vitro culture are yet unknown. In this study, we have addressed the impact of replicative senescence on human MSC preparations. Within 43 to 77 days of cultivation (7 to 12 passages), MSC demonstrated morphological abnormalities, enlargement, attenuated expression of specific surface markers, and ultimately proliferation arrest. Adipogenic differentiation potential decreased whereas the propensity for osteogenic differentiation increased. mRNA expression profiling revealed a consistent pattern of alterations in the global gene expression signature of MSC at different passages. These changes are not restricted to later passages, but are continuously acquired with increasing passages. Genes involved in cell cycle, DNA replication and DNA repair are significantly down-regulated in late passages. Genes from chromosome 4q21 were over-represented among differentially regulated transcripts. Differential expression of 10 genes has been verified in independent donor samples as well as in MSC that were isolated under different culture conditions. Furthermore, miRNA expression profiling revealed an up-regulation of hsa-mir-371, hsa-mir-369-5P, hsa-mir-29c, hsa-mir-499 and hsa-let-7f upon in vitro propagation. Our studies indicate that replicative senescence of MSC preparations is a continuous process starting from the first passage onwards. This process includes far reaching alterations in phenotype, differentiation potential, global gene expression patterns, and miRNA profiles that need to be considered for therapeutic application of MSC preparations.


Assuntos
Divisão Celular , Senescência Celular , Células-Tronco Mesenquimais/citologia , Adipócitos/química , Diferenciação Celular , Reparo do DNA/genética , Replicação do DNA/genética , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética
18.
Mol Endocrinol ; 22(2): 361-79, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17962383

RESUMO

Estradiol (E2) is believed to modulate physiological functions relevant to osteoblast biology through the actions of estrogen receptors (ERs) that in turn regulate the expression of target genes. The molecular effects of estrogen action in bone remain to be fully elucidated. This study reports a genome-wide molecular and computational analysis of the interaction between ER and regulatory elements on the DNA of target genes in human primary osteoblasts. Of approximately 54,000 gene probes surveyed in this study, a total of 375 genes were up-regulated and 418 genes were down-regulated on exposure to E2, with only 46 of these being direct target genes after 24 h, as determined by concomitant cycloheximide treatment. Computational analysis discovered several pathways where E2 co-regulates multiple functionally linked components. Examination of the genomic sequence of IGF binding protein 4 located ER response elements within the first intron. Using by chromatin immunoprecipitation, we show a site- and cell-specific recruitment of transcription factors to this newly identified regulatory region. Transient transfection studies revealed that this intronic region acts as a functional promoter in human osteoblasts. Taken together, this analysis provides a comprehensive gene transcription profile and identifies several genes of potential physiological importance in controlling estrogen-mediated signaling in primary osteoblasts.


Assuntos
Estrogênios/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Osteoblastos/efeitos dos fármacos , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Cicloeximida/farmacologia , Estradiol/farmacologia , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Íntrons/genética , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Transfecção
19.
Exp Hematol ; 34(4): 536-48, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16569600

RESUMO

OBJECTIVE: Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. METHODS: In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). RESULTS: In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. CONCLUSION: Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células-Tronco Mesenquimais/fisiologia , Proteoma/metabolismo , Transcrição Gênica/fisiologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Separação Celular/métodos , Separação Celular/normas , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Proteoma/genética , Proteoma/normas , Reprodutibilidade dos Testes
20.
Bioinformatics ; 22(6): 765-7, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16377611

RESUMO

UNLABELLED: With the production of whole genome microarray chips the ability arises to investigate whether the regulation of particular groups of genes may be influenced by their chromosomal localization. Chromosome Co-Localization probability calculator (ChroCoLoc) is a publicly available web-based tool for the analysis of co-localization of co-expressed genes identified by microarray experiments. AVAILABILITY: http://www.ebi.ac.uk/expressionprofiler/


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Perfilação da Expressão Gênica/métodos , Desequilíbrio de Ligação/genética , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Interface Usuário-Computador , Algoritmos , Simulação por Computador , Humanos , Modelos Genéticos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...