Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1416537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040600

RESUMO

Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Salmonella typhimurium , Animais , Mycobacterium avium subsp. paratuberculosis/fisiologia , Salmonella typhimurium/fisiologia , Salmonella typhimurium/patogenicidade , Camundongos , Paratuberculose/microbiologia , Viabilidade Microbiana , Mucosa Intestinal/microbiologia , Bovinos , Células M
2.
Sci Rep ; 14(1): 14964, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942800

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's Disease, a chronic granulomatous enteritis of ruminants. MAP establishes an infection in the host via the small intestine. This requires the bacterium to adhere to, and be internalised by, cells of the intestinal tract. The effector molecules expressed by MAP for this purpose remain to be fully identified and understood. Mammalian cell entry (mce) proteins have been shown to enable other Mycobacterial species to attach to and invade host epithelial cells. Here, we have expressed Mce1A, Mce1D, Mce3C and Mce4A proteins derived from MAP on the surface of a non-invasive Escherichia coli to characterise their role in the initial interaction between MAP and the host. To this end, expression of mce1A was found to significantly increase the ability of the E. coli to attach and survive intracellularly in human monocyte-like THP-1 cells, whereas expression of mce1D was found to significantly increase attachment and invasion of E. coli to bovine epithelial cell-like MDBK cells, implying cell-type specificity. Furthermore, expression of Mce1A and Mce1D on the surface of a previously non-invasive E. coli enhanced the ability of the bacterium to infect 3D bovine basal-out enteroids. Together, our data contributes to our understanding of the effector molecules utilised by MAP in the initial interaction with the host, and may provide potential targets for therapeutic intervention.


Assuntos
Proteínas de Bactérias , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Mycobacterium avium subsp. paratuberculosis/metabolismo , Paratuberculose/microbiologia , Animais , Humanos , Bovinos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aderência Bacteriana , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Linhagem Celular , Células THP-1
3.
Front Vet Sci ; 9: 921160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859809

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) is the etiological agent of Johne's Disease, a chronic enteritis of ruminants prevalent across the world. It is estimated that approximately 50% of UK dairy herds are infected with MAP, but this is likely an underestimate of the true prevalence. Infection can result in reduced milk yield, infertility and premature culling of the animal, leading to significant losses to the farming economy and negatively affecting animal welfare. Understanding the initial interaction between MAP and the host is critical to develop improved diagnostic tools and novel vaccines. Here we describe the characterisation of three different multicellular in vitro models derived from bovine intestinal tissue, and their use for the study of cellular interactions with MAP. In addition to the previously described basal-out 3D bovine enteroids, we have established viable 2D monolayers and 3D apical-out organoids. The apical-out enteroids differ from previously described bovine enteroids as the apical surface is exposed on the exterior surface of the 3D structure, enabling study of host-pathogen interactions at the epithelial surface without the need for microinjection. We have characterised the cell types present in each model system using RT-qPCR to detect predicted cell type-specific gene expression, and confocal microscopy for cell type-specific protein expression. Each model contained the cells present in the original bovine intestinal tissue, confirming they were representative of the bovine gut. Exposure of the three model systems to the K10 reference strain of MAP K10, and a recent Scottish isolate referred to as C49, led to the observation of intracellular bacteria by confocal microscopy. Enumeration of the bacteria by quantification of genome copy number, indicated that K10 was less invasive than C49 at early time points in infection in all model systems. This study shows that bovine enteroid-based models are permissive to infection with MAP and that these models may be useful in investigating early stages of MAP pathogenesis in a physiologically relevant in vitro system, whilst reducing the use of animals in scientific research. Bos taurus: urn:lsid:zoobank.org:act:4C90C4FA-6296-4972-BE6A-5EF578677D64.

4.
J Virol ; 96(14): e0048822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758692

RESUMO

Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.


Assuntos
Genética Reversa , Rotavirus , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Aminoácidos/metabolismo , Animais , Anticorpos Antivirais/metabolismo , COVID-19/virologia , Epitopos/genética , Epitopos/metabolismo , Humanos , Microrganismos Geneticamente Modificados , Rotavirus/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Desenvolvimento de Vacinas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA