Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 4(6): 943-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520882

RESUMO

Inhibitors of apoptosis (IAPs) limit the effectiveness of radiation in non-small cell lung cancer (NSCLC). Debio 1143 (D1143) is an antagonist of IAPs. The purpose of this study was to investigate the potential of D1143 as a radiosensitizer in NSCLC. MTS assays were performed in two NSCLC cell lines: HCC193 and H460. Extent of apoptotic cell death was characterized by Annexin V assay and Western blot for cleaved caspase-3, -8, and IAPs. TNF-α release was determined by ELISA. Radiosensitivities were compared with dose enhancement ratios (DERs). HCC193 cells D1143 IC50 was 1 µM. HCC193 cells demonstrated noticeable cleaved caspase-3, -8, and a decrease in IAP levels with 2.5 µM D1143; H460 cells, with 10 µM; both in a time-dependent manner. Additionally, HCC193 cells exhibited an increase in TNF-α. D1143 radiosensitized cells: HCC193, 2.5 µM D1143, 24 h incubation, DER of 2.19, p = 0.001; H460 cells, 10 µM D1143, 48 h incubation, DER of 1.29, p = 0.082. Treatment of H460 cells with radiation therapy, TNF-α, and D1143 further radiosensitized the cells (DER of 1.92, p = 0.026). D1143 significantly enhanced the radiosensitization of HCC193 and H460 cells in vitro. TNF-α contributed to the sensitization in the more sensitive cell line (HCC193). More research is warranted to test the mechanism of D1143, and to assess its potential in vivo in the clinical setting.

2.
Am J Cancer Res ; 4(2): 161-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24660105

RESUMO

Radiation-induced lung injury (RILI) is a significant dose limiting complication of thoracic radiation for lung, breast, and esophageal cancer. Strategies for increasing the therapeutic index of radiation involve the use of radiosensitizing agents. We investigated the potential of M867 to sensitize non-small cell lung cancer (NSCLC) to radiation in vivo, while assessing its protective effects in normal lung parenchyma. H460-Luc2 cells were implanted into the mediastinum of athymic nude mice, which were separated into four treatment groups: control, M867, radiation therapy (RT) or combination. H460-Luc2 cell cultures were treated in parallel. Tumor growth was followed using bioluminescence imaging. Immunohistochemistry staining was used to detect phospho-Smad2/3 and cleaved caspase-3 expression. Western blot was done for the detection of cleaved caspase-3 and phospho-Smad2/3. TUNEL assays were used to measure apoptosis. M867+RT group had significantly increased tumor growth inhibition relative to either treatment alone (p=0.02). M867+RT was associated with increased levels of apoptosis (p<0.01), but combination treatment was associated with a decrease in caspase-dependent apoptosis relative to RT alone (p<0.01). We found that this increase in apoptosis in the M867+RT group was due to caspase-independent cell death. Based on early biomarker analyses of phospho-Smad 2/3 and cleaved caspase-3, M867+RT had a radio-protective effect on normal lung parenchyma. M867 may increase the therapeutic ratio of RT by enhancing the radiosensitivity of NSCLC while mitigating RILI. Further research is warranted to examine the late effects of lung injury and to study differences in the mechanism of action of M867 on lung cancer and normal tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...