Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 53(18): 9531-40, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25162209

RESUMO

Uranium-americium mixed oxides could be used as transmutation targets to lower Am inventory in spent nuclear fuels. Due to (241)Am activity, these materials are subjected to α-self-irradiation which provokes crystallographic disorder. Previous studies on U-Am mixed oxides gave first insight into α-radiation tolerance of these compounds, but have never been carried out for more than a year, whereas these compounds might be stored up to a few years between fabrication and irradiation. In this work, we study effects of self-irradiation on the structure of U(1-x)Am(x)O(2±Î´) solid solutions (x = 0.15 and 0.20) aged 3 to 4 years. Especially, X-ray diffraction and X-ray absorption spectroscopy are combined to observe these effects from both long-range and local perspectives. Results show that the fluorite-type structure of U-Am mixed oxides withstands (241)Am α-irradiation without major damage. Despite the increase of interatomic distances and crystallographic disorder observed during the first months of storage, the present results show that a steady state is then reached. Thus, no detrimental factors have been identified in this study in terms of structural damage for several-year storage of U(1-x)Am(x)O(2±Î´) pellets before irradiation. Furthermore, comparison between long-range and local evolution suggests that α-self-irradiation-induced defects are mainly located in low-ordered domains. Based on literature data and present results, the steady state appears related to the equilibrium between radioinduced defect formation and material self-healing.

2.
Inorg Chem ; 51(17): 9369-75, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22908900

RESUMO

In order to reduce the nuclear waste inventory and radiotoxicity, U(1-x)Am(x)O(2±Î´) materials are promising fuels for heterogeneous transmutation. In this context, they are generally fabricated from UO(2+δ) and AmO(2-δ) dioxide powders. In the subsequent solid solution, americium is assumed to be trivalent whereas uranium exhibits a mixed-valence (+IV/+V) state. However, no formation mechanisms were ever evidenced and, more particularly, it was not possible to know whether the reduction of Am(IV) to Am(III) occurs before the solid-solution formation, or only once it is established. In this study, we used high-temperature X-ray diffraction on a UO(2±Î´)/AmO(2-δ) (15 mol %) mixture to observe in situ the formation of the U(1-x)Am(x)O(2±Î´) solid solution. We show that UO(2+δ) is, at relatively low temperature (<700 K), oxidized to U(4)O(9-δ), which is likely to be caused by oxygen release from the simultaneous AmO(2-δ) reduction to cubic Am(2)O(3±Î´). Cubic Am(2)O(3+δ) then transforms to hexagonal Am(2)O(3) at 1300 K. Thus, the initial Am(IV) is fully reduced to Am(III) before the solid solution starts forming at 1740 K. The UO(2) fluorite phase vanishes after 4 h at 1970 K, indicating that the formation of the solid solution is completed, which proves that this solid solution is formed after the complete reduction of Am(IV) to Am(III).

3.
Inorg Chem ; 50(24): 12437-45, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22087707

RESUMO

Partitioning and transmutation (P&T) of minor actinides (MA) is currently studied to reduce the nuclear waste inventory. In this context, the fabrication of MA bearing materials is of great interest to achieve an effective recycling of these highly radioactive elements. To ensure the in-pile behavior, nuclear oxide fuels have to respect several criteria including preservation of the fluorite structure and defined oxygen to metal ratio (O/M). In the case of Am bearing materials, such as U(1-y)Am(y)O(2±x) (y = 0.10, 0.15, 0.20), the O/M determination is quite challenging using conventional methods (TGA, XRD) because of the particular thermodynamic properties of Am. Despite the lack of experimental data in the U-Am-O system, thermodynamical models are currently developed to effectively assess the O/M ratio. In this work, the O/M ratios were calculated for various oxygen potentials using the cation molar fraction determined by XAS measurements. These results are an important addition to the experimental data available for the U-Am-O system. Moreover, XRD and XAS indicated that the fabrication of fluorite U(1-y)Am(y)O(2±x) solid solution was achieved for all Am content and oxygen potentials investigated. On the basis of the molar fraction, a description of the solid solution was proposed depending on the considered sintering conditions. Finally, the occurrence of an unexpected charge compensation mechanism was pointed out.

4.
J Chromatogr A ; 1108(1): 90-8, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16445921

RESUMO

Sedimentation field flow fractionation was used to obtain purified fractions from a polydispersed zirconia colloidal suspension in the potential purpose of optical material hybrid coating. The zirconia particle size ranged from 50/70 nm to 1000 nm. It exhibited a log-Gaussian particle size distribution (in mass or volume) and a 115% polydispersity index (P.I.). Time dependent eluted fractions of the original zirconia colloidal suspension were collected. The particle size distribution of each fraction was determined with scanning electron microscopy and Coulter sub-micron particle sizer (CSPS). These orthogonal techniques generated similar data. From fraction average elution times and granulometry measurements, it was shown that zirconia colloids are eluted according to the Brownian elution mode. The four collected fractions have a Gaussian like distribution and respective average size and polydispersity index of 153 nm (P.I. = 34.7%); 188 nm (P.I. = 27.9%); 228 nm (P.I. = 22.6%), and 276 nm (P.I. = 22.3%). These data demonstrate the strong size selectivity of SdFFF operated with programmed field of exponential profile for sorting particles in the sub-micron range. Using this technique, the analytical production of zirconia of given average size and reduced polydispersity is possible.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Zircônio/isolamento & purificação , Coloides/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...