Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(5): e14021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882311

RESUMO

A fully mechanistic dynamical model for plant nitrate uptake is presented. Based on physiological and regulatory pathways and based on physical laws, we form a dynamic system mathematically described by seven differential equations. The model evidences the presence of a short-term positive feedback on the high-affinity nitrate uptake, triggered by the presence of nitrate around the roots, which induces its intaking. In the long run, this positive feedback is overridden by two long-term negative feedback loops which drastically reduces the nitrate uptake capacity. These two negative feedbacks are due to the generation of ammonium and amino acids, respectively, and inhibit the synthesis and the activity of high-affinity nitrate transporters. This model faithfully predicts the typical spiking behavior of the nitrate uptake, in which an initial strong increase of nitrate absorption capacity is followed by a drop, which regulates the absorption down to the initial value. The model outcome was compared with experimental data and they fit quite nicely. The model predicts that after the initial exposure of the roots with nitrate, the absorption of the anion strongly increases and that, on the contrary, the intensity of the absorption is limited in presence of ammonium around the roots.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/farmacologia , Nitratos/metabolismo , Zea mays/metabolismo , Transportadores de Nitrato , Plantas/metabolismo , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo
2.
Sci Rep ; 13(1): 1052, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658143

RESUMO

Early detection of the emergence of a new variant of concern (VoC) is essential to develop strategies that contain epidemic outbreaks. For example, knowing in which region a VoC starts spreading enables prompt actions to circumscribe the geographical area where the new variant can spread, by containing it locally. This paper presents 'funnel plots' as a statistical process control method that, unlike tools whose purpose is to identify rises of the reproduction number ([Formula: see text]), detects when a regional [Formula: see text] departs from the national average and thus represents an anomaly. The name of the method refers to the funnel-like shape of the scatter plot that the data take on. Control limits with prescribed false alarm rate are derived from the observation that regional [Formula: see text]'s are normally distributed with variance inversely proportional to the number of infectious cases. The method is validated on public COVID-19 data demonstrating its efficacy in the early detection of SARS-CoV-2 variants in India, South Africa, England, and Italy, as well as of a malfunctioning episode of the diagnostic infrastructure in England, during which the Immensa lab in Wolverhampton gave 43,000 incorrect negative tests relative to South West and West Midlands territories.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Reprodução
3.
Math Med Biol ; 40(1): 96-110, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469499

RESUMO

Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.


Assuntos
Doença Relacionada a Viagens , Viagem , Humanos
4.
Nat Commun ; 13(1): 5720, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175425

RESUMO

While there is widespread concern regarding the impact of pesticides on honey bees, well-replicated field experiments, to date, have failed to provide clear insights on pesticide effects. Here, we adopt a systems biology approach to gain insights into the web of interactions amongst the factors influencing honey bee health. We put the focus on the properties of the system that depend upon its architecture and not on the strength, often unknown, of each single interaction. Then we test in vivo, on caged honey bees, the predictions derived from this modelling analysis. We show that the impact of toxic compounds on honey bee health can be shaped by the concurrent stressors affecting bees. We demonstrate that the immune-suppressive capacity of the widespread pathogen of bees, deformed wing virus, can introduce a critical positive feed-back loop in the system causing bistability, i.e., two stable equilibria. Therefore, honey bees under similar initial conditions can experience different consequences when exposed to the same stressor, including prolonged survival or premature death. The latter can generate an increased vulnerability of the hive to dwindling and collapse. Our conclusions reconcile contrasting field-testing outcomes and have important implications for the application of field studies to complex systems.


Assuntos
Praguicidas , Animais , Abelhas , Terapia de Imunossupressão , Mortalidade Prematura , Praguicidas/toxicidade , Resolução de Problemas , Vírus de RNA
5.
J Math Biol ; 85(4): 35, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123409

RESUMO

We consider the problem of assessing the sensitivity of uncertain biochemical systems in the presence of input perturbations (either constant or periodic) around a stable steady state. In particular, we propose approaches for the robust sensitivity analysis of systems with uncertain parameters assumed to take values in a hyper-rectangle. We highlight vertex results, which allow us to check whether a property is satisfied for all parameter choices in the hyper-rectangle by simply checking whether it is satisfied for all parameter choices at the vertices of the hyper-rectangle. We show that, for a vast class of systems, including (bio)chemical reaction networks with mass-action kinetics, the system Jacobian has a totally multiaffine structure (namely, all minors of the Jacobian matrix are multiaffine functions of the uncertain parameters), which can be exploited to obtain several vertex results. We consider different problems: robust non-singularity; robust stability of the steady-state; robust steady-state sensitivity analysis, in the case of constant perturbations; robust frequency-response sensitivity analysis, in the presence of periodic perturbations; and robust adaptation analysis. The developed theory is then applied to gain insight into some examples of uncertain biochemical systems, including the incoherent feed-forward loop, the coherent feed-forward loop, the Brusselator oscillator and the Goldbeter oscillator.


Assuntos
Algoritmos , Cinética , Incerteza
6.
J Comput Neurosci ; 50(4): 471-484, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816263

RESUMO

Fibromyalgia (FM) is an unsolved central pain processing disturbance. We aim to provide a unifying model for FM pathogenesis based on a loop network involving thalamocortical regions, i.e., the ventroposterior lateral thalamus (VPL), the somatosensory cortex (SC), and the thalamic reticular nucleus (TRN). The dynamics of the loop have been described by three differential equations having neuron mean firing rates as variables and containing Hill functions to model mutual interactions among the loop elements. A computational analysis conducted with MATLAB has shown a transition from monostability to bistability of the loop behavior for a weakening of GABAergic transmission between TRN and VPL. This involves the appearance of a high-firing-rate steady state, which becomes dominant and is assumed to represent pathogenic pain processing giving rise to chronic pain. Our model is consistent with a bulk of literature evidence, such as neuroimaging and pharmacological data collected on FM patients, and with correlations between FM and immunoendocrine conditions, such as stress, perimenopause, chronic inflammation, obesity, and chronic dizziness. The model suggests that critical targets for FM treatment are to be found among immunoendocrine pathways leading to GABA/glutamate imbalance having an impact on the thalamocortical system.


Assuntos
Fibromialgia , Feminino , Humanos , Vias Neurais/fisiologia , Modelos Neurológicos , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Dor
7.
PLoS One ; 17(7): e0272002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881615

RESUMO

The demand for high level of safety and superior quality in agricultural products is of prime concern. The introduction of new technologies for supporting crop management allows the efficiency and quality of production to be improved and, at the same time, reduces the environmental impact. Common strategies to disease control are mainly oriented on spraying pesticides uniformly over cropping areas at different times during the growth cycle. Even though these methodologies can be effective, they present a negative impact in ecological and economic terms, introducing new pests and elevating resistance of the pathogens. Therefore, consideration for new automatic and accurate along with inexpensive and efficient techniques for the detection and severity estimation of pathogenic diseases before proper control measures can be suggested is of great realistic significance and may reduce the likelihood of an infection spreading. In this work, we present a novel system-theoretic approach for leaf image-based automatic quantitative assessment of pathogenic disease severity regardless of disease type. The proposed method is based on a highly efficient and noise-rejecting positive non-linear dynamical system that recursively transforms the leaf image until only the symptomatic disease patterns are left. The proposed system does not require any training to automatically discover the discriminative features. The experimental setup allowed to assess the system ability to generalise symptoms detection beyond any previously seen conditions achieving excellent results. The main advantage of the approach relies in the robustness when dealing with low-resolution and noisy images. Indeed, an essential issue related to digital image processing is to effectively reduce noise from an image whilst keeping its features intact. The impact of noise is effectively reduced and does not affect the final result allowing the proposed system to ensure a high accuracy and reliability.


Assuntos
Processamento de Imagem Assistida por Computador , Praguicidas , Agricultura , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
8.
Nat Med ; 27(6): 993-998, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864052

RESUMO

Despite progress in clinical care for patients with coronavirus disease 2019 (COVID-19)1, population-wide interventions are still crucial to manage the pandemic, which has been aggravated by the emergence of new, highly transmissible variants. In this study, we combined the SIDARTHE model2, which predicts the spread of SARS-CoV-2 infections, with a new data-based model that projects new cases onto casualties and healthcare system costs. Based on the Italian case study, we outline several scenarios: mass vaccination campaigns with different paces, different transmission rates due to new variants and different enforced countermeasures, including the alternation of opening and closure phases. Our results demonstrate that non-pharmaceutical interventions (NPIs) have a higher effect on the epidemic evolution than vaccination alone, advocating for the need to keep NPIs in place during the first phase of the vaccination campaign. Our model predicts that, from April 2021 to January 2022, in a scenario with no vaccine rollout and weak NPIs ([Formula: see text] = 1.27), as many as 298,000 deaths associated with COVID-19 could occur. However, fast vaccination rollouts could reduce mortality to as few as 51,000 deaths. Implementation of restrictive NPIs ([Formula: see text] = 0.9) could reduce COVID-19 deaths to 30,000 without vaccinating the population and to 18,000 with a fast rollout of vaccines. We also show that, if intermittent open-close strategies are adopted, implementing a closing phase first could reduce deaths (from 47,000 to 27,000 with slow vaccine rollout) and healthcare system costs, without substantive aggravation of socioeconomic losses.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/patogenicidade , COVID-19/epidemiologia , COVID-19/genética , COVID-19/virologia , Vacinas contra COVID-19/genética , Humanos , Itália/epidemiologia , Pandemias , SARS-CoV-2/genética , Vacinação
9.
Sci Rep ; 11(1): 280, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431927

RESUMO

A well-known property of linear resistive electrical networks is that the current distribution minimizes the total dissipated power. When the circuit includes resistors with nonlinear monotonic characteristic, the current distribution minimizes in general a different functional. We show that, if the nonlinear characteristic is a threshold-like function and the current generator is concentrated in a single point, as in the case of lightning or dielectric discharge, then the current flow is concentrated along a single path, which is a minimum path to the ground with respect to the threshold. We also propose a dynamic model that explains and qualitatively reproduces the lightning transient behavior: initial generation of several plasma branches and subsequent dismissal of all branches but the one reaching the ground first, which is the optimal one.

10.
IEEE Trans Cybern ; 51(5): 2587-2600, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31021784

RESUMO

This paper discusses the problem of tracking a moving target by means of a cluster of mobile agents that is able to sense the acoustic emissions of the target, with the aim of improving the target localization and tracking performance with respect to conventional fixed-array acoustic localization. We handle the acoustic part of the problem by modeling the cluster as a sensor network, and we propose a centralized control strategy for the agents that exploits the spatial sensitivity pattern of the sensor network to estimate the best possible cluster configuration with respect to the expected target position. In order to take into account the position estimation delay due to the frame-based nature of the processing, the possible positions of the acoustic target in a given future time interval are represented in terms of a compatible set, that is, the set of all possible future positions of the target, given its dynamics and its present state. A frame-by-frame cluster reconfiguration algorithm is presented, which adapts the position of each sensing agent with the goal of pursuing the maximum overlap between the region of high acoustic sensitivity of the entire cluster and the compatible set of the sound-emitting target. The tracking scheme iterates, at each observation frame, the computation of the target compatible set, the reconfiguration of the cluster, and the target acoustic localization. The reconfiguration step makes use of an opportune cost function proportional to the difference of the compatibility set and the acoustic sensitivity spatial pattern determined by the mobile agent positions. Simulations under different geometric configurations and positioning constraints demonstrate the ability of the proposed approach to effectively localize and track a moving target based on its acoustic emission. The Doppler effect related to moving sources and sensors is taken into account, and its impact on performance is analyzed. We compare the localization results with conventional static-array localization and positioning of acoustic sensors through genetic algorithm optimization, and results demonstrate the sensible improvements in terms of localization and tracking performance. Although the method is discussed here with respect to acoustic target tracking, it can be effectively adapted to video-based localization and tracking, or to multimodal information settings (e.g., audio and video).

11.
PLoS One ; 15(12): e0244234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332476

RESUMO

Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Mitocôndrias/metabolismo , Modelos Teóricos , Mutação , Superóxido Dismutase-1/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Glicólise , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Fosforilação Oxidativa , Estresse Oxidativo
12.
Front Neurol ; 11: 576860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244308

RESUMO

Introduction: Mal de Debarquement Syndrome (MdDS) is a poorly understood neurological disorder affecting mostly perimenopausal women. MdDS has been hypothesized to be a maladaptation of the vestibulo-ocular reflex, a neuroplasticity disorder, and a consequence of neurochemical imbalances and hormonal changes. Our hypothesis considers elements from these theories, but presents a novel approach based on the analysis of functional loops, according to Systems and Control Theory. Hypothesis: MdDS is characterized by a persistent sensation of self-motion, usually occurring after sea travels. We assume the existence of a neuronal mechanism acting as an oscillator, i.e., an adaptive internal model, that may be able to cancel a sinusoidal disturbance of posture experienced aboard, due to wave motion. Thereafter, we identify this mechanism as a multi-loop neural network that spans between vestibular nuclei and the flocculonodular lobe of the cerebellum. We demonstrate that this loop system has a tendency to oscillate, which increases with increasing strength of neuronal connections. Therefore, we hypothesize that synaptic plasticity, specifically long-term potentiation, may play a role in making these oscillations poorly damped. Finally, we assume that the neuromodulator Calcitonin Gene-Related Peptide, which is modulated in perimenopausal women, exacerbates this process thus rendering the transition irreversible and consequently leading to MdDS. Conclusion and Validation: The concept of an oscillator that becomes noxiously permanent can be used as a model for MdDS, given a high correlation between patients with MdDS and sea travels involving undulating passive motion, and an alleviation of symptoms when patients are re-exposed to similar passive motion. The mechanism could be further investigated utilizing posturography tests to evaluate if subjective perception of motion matches with objective postural instability. Neurochemical imbalances that would render individuals more susceptible to developing MdDS could be investigated through hormonal profile screening. Alterations in the connections between vestibular nuclei and cerebellum, notably GABAergic fibers, could be explored by neuroimaging techniques as well as transcranial magnetic stimulation. If our hypothesis were tested and verified, optimal targets for MdDS treatment could be found within both the neural networks and biochemical factors that are deemed to play a fundamental role in loop functioning and synaptic plasticity.

13.
Nat Med ; 26(6): 855-860, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32322102

RESUMO

In Italy, 128,948 confirmed cases and 15,887 deaths of people who tested positive for SARS-CoV-2 were registered as of 5 April 2020. Ending the global SARS-CoV-2 pandemic requires implementation of multiple population-wide strategies, including social distancing, testing and contact tracing. We propose a new model that predicts the course of the epidemic to help plan an effective control strategy. The model considers eight stages of infection: susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed (H) and extinct (E), collectively termed SIDARTHE. Our SIDARTHE model discriminates between infected individuals depending on whether they have been diagnosed and on the severity of their symptoms. The distinction between diagnosed and non-diagnosed individuals is important because the former are typically isolated and hence less likely to spread the infection. This delineation also helps to explain misperceptions of the case fatality rate and of the epidemic spread. We compare simulation results with real data on the COVID-19 epidemic in Italy, and we model possible scenarios of implementation of countermeasures. Our results demonstrate that restrictive social-distancing measures will need to be combined with widespread testing and contact tracing to end the ongoing COVID-19 pandemic.


Assuntos
Simulação por Computador , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Feminino , Humanos , Itália/epidemiologia , Masculino , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Quarentena , SARS-CoV-2
14.
PLoS Comput Biol ; 15(9): e1007346, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513566

RESUMO

We performed a mathematical analysis of the dynamic control loops regulating the vasomotor tone of vascular smooth muscle, blood volume, and mean arterial pressure, which involve the arginine vasopressin (AVP) system, the atrial natriuretic peptide system (ANP), and the renin-angiotensin-aldosterone system (RAAS). Our loop analysis of the AVP-ANP-RAAS system revealed the concurrent presence of two different regulatory mechanisms, which perform the same qualitative function: one affects blood pressure by regulating vasoconstriction, the other by regulating blood volume. Both the systems are candidate oscillators consisting of the negative-feedback loop of a monotone system: they admit a single equilibrium that can either be stable or give rise to oscillatory instability. Also a subsystem, which includes ANP and AVP stimulation of vascular smooth muscle cells, turns out to be a candidate oscillator composed of a monotone system with multiple negative feedback loops, and we show that its oscillatory potential is higher when the delays along all feedback loops are comparable. Our results give insight into the physiological mechanisms ruling long-term homeostasis of blood hydraulic parameters, which operate based on dynamical loops of interactions.


Assuntos
Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Arginina Vasopressina/metabolismo , Fator Natriurético Atrial/metabolismo , Cálcio/metabolismo , Biologia Computacional , Retroalimentação Fisiológica/fisiologia , Humanos , Músculo Liso Vascular/citologia , Sistema Renina-Angiotensina/fisiologia
15.
ACS Synth Biol ; 7(6): 1481-1487, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29676894

RESUMO

Biological oscillators are present in nearly all self-regulating systems, from individual cells to entire organisms. In any oscillator structure, a negative feedback loop is necessary, but not sufficient to guarantee the emergence of periodic behaviors. The likelihood of oscillations can be improved by careful tuning of the system time constants and by increasing the loop gain, yet it is unclear whether there is any general relationship between optimal time constants and loop gain. This issue is particularly relevant in genetic oscillators resulting from a chain of different subsequent biochemical events, each with distinct (and uncertain) kinetics. Using two families of genetic oscillators as model examples, we show that the loop gain required for oscillations is minimum when all elements in the loop have the same time constant. On the contrary, we show that homeostasis is ensured if a single element is considerably slower than the others.


Assuntos
Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Relógios Biológicos/fisiologia , Cinética , Fatores de Tempo
16.
J Biol Dyn ; 11(1): 102-120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27830588

RESUMO

Oscillators are essential to fuel autonomous behaviours in molecular systems. Artificial oscillators built with programmable biological molecules such as DNA and RNA are generally easy to build and tune, and can serve as timers for biological computation and regulation. We describe a new artificial nucleic acid biochemical reaction network, and we demonstrate its capacity to exhibit oscillatory solutions. This network can be built in vitro using nucleic acids and three bacteriophage enzymes, and has the potential to be implemented in cells. Numerical simulations suggest that oscillations occur in a realistic range of reaction rates and concentrations.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Modelos Químicos , Ácidos Nucleicos/química , Bacteriófagos/enzimologia , Oscilometria
17.
ACS Synth Biol ; 5(4): 321-33, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26797494

RESUMO

Molecular titration is emerging as an important biochemical interaction mechanism within synthetic devices built with nucleic acids and the CRISPR/Cas system. We show that molecular titration in the context of feedback circuits is a suitable mechanism to enhance the emergence of oscillations and bistable behaviors. We consider biomolecular modules that can be inhibited or activated by input monomeric regulators; the regulators compete with constitutive titrating species to determine the activity of their target. By tuning the titration rate and the concentration of titrating species, it is possible to modulate the delay and convergence speed of the transient response, and the steepness and dead zone of the stationary response of the modules. These phenomena favor the occurrence of oscillations when modules are interconnected to create a negative feedback loop; bistability is favored in a positive feedback interconnection. Numerical simulations are supported by mathematical analysis showing that the capacity of the closed loop systems to exhibit oscillations or bistability is structural.


Assuntos
Modelos Biológicos , Sistemas CRISPR-Cas/genética , Redes Reguladoras de Genes/genética
18.
J Math Biol ; 72(7): 1927-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26395779

RESUMO

We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.


Assuntos
Fenômenos Bioquímicos/fisiologia , Modelos Biológicos , Algoritmos
19.
Bull Math Biol ; 76(10): 2542-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25230803

RESUMO

Molecular systems are uncertain: The variability of reaction parameters and the presence of unknown interactions can weaken the predictive capacity of solid mathematical models. However, strong conclusions on the admissible dynamic behaviors of a model can often be achieved without detailed knowledge of its specific parameters. In systems with a sign-definite Jacobian, for instance, cycle-based criteria related to the famous Thomas' conjectures have been largely used to characterize oscillatory and multistationary dynamic outcomes. We build on the rich literature focused on the identification of potential oscillatory and multistationary behaviors using parameter-free criteria. We propose a classification for sign-definite non-autocatalytic biochemical networks, which summarizes several existing results in the literature. We call weak (strong) candidate oscillators systems which can possibly (exclusively) transition to instability due to the presence of a complex pair of eigenvalues, while we call weak (strong) candidate multistationary systems those which can possibly (exclusively) transition to instability due to the presence of a real eigenvalue. For each category, we provide a characterization based on the exclusive or simultaneous presence of positive and negative cycles in the associated sign graph. Most realistic examples of biochemical networks fall in the gray area of systems in which both positive and negative cycles are present: Therefore, both oscillatory and bistable behaviors are in principle possible. However, many canonical example circuits exhibiting oscillations or bistability fall in the categories of strong candidate oscillators/multistationary systems, in agreement with our results.


Assuntos
Fenômenos Bioquímicos , Modelos Químicos , Retroalimentação Fisiológica , Redes Reguladoras de Genes , Conceitos Matemáticos , Modelos Genéticos , Biologia Sintética , Biologia de Sistemas
20.
J Math Biol ; 67(6-7): 1633-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23096491

RESUMO

In this paper we propose and analyze parameter-free models for the mitogen-activated protein kinase (MAPK) pathway in PC12 rat neural cells. Experiments show that the dynamic behavior of this pathway depends on the input growth factor. The response to epidermal growth factor (EGF) is a short peak followed by a relaxation, while the response to nerve growth factor (NGF) is sustained. In the latter case, the system can be driven to a new state, which persists after the stimulus has vanished. Ultimately, these dynamic behaviors correspond to different cell fates: EFG stimulation induces proliferation, while NGF stimulation induces differentiation. The biochemical mechanisms responsible for the different input-dependent dynamic response are still unclear. One hypothesis is that each input generates a specific interaction topology among the kinases. Starting from experimental results that support this hypothesis, we derive and analyze qualitative models for the two network topologies. Our approach is based on invariant set theory and non-smooth Lyapunov functions. We demonstrate analytically that the network behaviors and stability properties are structurally dependent on the topology, and do not depend on specific parameter values of the underlying biochemical interactions.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Modelos Neurológicos , Fatores de Crescimento Neural/farmacologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Rede Nervosa/citologia , Rede Nervosa/enzimologia , Neurônios/citologia , Neurônios/enzimologia , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...