Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sci Rep ; 14(1): 14346, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906947

RESUMO

This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as ß-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular ß-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting ß-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive ß-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.


Assuntos
Microalgas , Soro do Leite , beta-Galactosidase , beta-Galactosidase/metabolismo , Microalgas/metabolismo , Microalgas/enzimologia , Soro do Leite/metabolismo , Lactose/metabolismo , Estramenópilas/enzimologia , Estramenópilas/metabolismo , Água Doce/microbiologia , Biodegradação Ambiental , Biomassa , Nitrogênio/metabolismo
2.
J Clin Med ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731011

RESUMO

Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorß1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.

3.
Vaccine X ; 17: 100438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303776

RESUMO

There are no licensed vaccines to protect vulnerable populations from the potentially fatal tropical infection, melioidosis, despite its causative agent, Burkholderia pseudomallei, being endemic in tropical and subtropical regions. A promising vaccine candidate, BpOmpW protected mice from melioidosis infection for up to 81 days and stimulated robust interferon gamma responses in CD4+, CD8+, NK and NKT cells. In order to progress to human studies, selection of an adjuvant with an acceptable human safety profile that stimulates appropriate correlates of protection is essential. Here we demonstrate that the CAF01 vaccine adjuvant elicits optimal immune correlates of protection when administered with our BpOmpW vaccine. Specifically, we demonstrate that CAF01 administered with BpOmpW elicits robust Th1 responses, with potent IFN-γ responses in CD4+ and CD8+ T cells and NKT cells, in addition to Th17 and Th2 responses. This formulation will be particularly effective in protecting susceptible populations including people with type 2 diabetes from melioidosis.

4.
PLoS One ; 19(2): e0298900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421980

RESUMO

Rhodococcus equi pneumonia is an important cause of mortality in foals worldwide. Virulent equine isolates harbour an 80-85kb virulence plasmid encoding six virulence-associated proteins (Vaps). VapA, the main virulence factor of this intracellular pathogen, is known to be a cell surface protein that creates an intracellular niche for R. equi growth. In contrast, VapC, VapD and VapE are secreted into the intracellular milieu. Although these Vaps share very high degree of sequence identity in the C-terminal domain, the N-terminal domain (N-domain) of VapA is distinct. It has been proposed that this domain plays a role in VapA surface localization but no direct experimental data provides support to such hypothesis. In this work, we employed R. equi 103S harbouring an unmarked deletion of vapA (R. equi ΔvapA) as the genetic background to express C-terminal Strep-tagged Vap-derivatives integrated in the chromosome. The surface localization of these proteins was assessed by flow cytometry using the THE2122;-NWSHPQFEK Tag FITC-antibody. We show that VapA is the only cell surface Vap encoded in the virulence plasmid. We present compelling evidence for the role of the N-terminal domain of VapA on cell surface localization using fusion proteins in which the N-domain of VapD was exchanged with the N-terminus of VapA. Lastly, using an N-terminally Strep-tagged VapA, we found that the N-terminus of VapA is exposed to the extracellular environment. Given the lack of a lipobox in VapA and the exposure of the N-terminal Strep-tag, it is possible that VapA localization on the cell surface is mediated by interactions between the N-domain and components of the cell surface. We discuss the implications of this work on the light of the recent discovery that soluble recombinant VapA added to the extracellular medium functionally complement the loss of VapA.


Assuntos
Infecções por Corynebacterium , Rhodococcus equi , Animais , Cavalos , Virulência/genética , Rhodococcus equi/genética , Membrana Celular , Proteínas de Membrana
5.
Open Res Eur ; 3: 88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37981907

RESUMO

Background: Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods: Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results: Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions: Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.


The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

6.
Hypertension ; 80(11): 2372-2385, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37851762

RESUMO

BACKGROUND: Hypoxic pulmonary hypertension is a difficult disease to manage that is characterized by sustained elevation of pulmonary vascular resistance and pulmonary artery pressure due to vasoconstriction, perivascular inflammation, and vascular remodeling. Consumption of soluble-fiber is associated with lower systemic blood pressure, but little is known about its ability to affect the pulmonary circulation. METHODS: Mice were fed either a low- or high-soluble-fiber diet (0% or 16.9% inulin) and then exposed to hypoxia (FiO2, 0.10) for 21 days to induce pulmonary hypertension. The impact of diet on right ventricular systolic pressure and pulmonary vascular resistance was determined in vivo or in ex vivo isolated lungs, respectively, and correlated with alterations in the composition of the gut microbiome, plasma metabolome, pulmonary inflammatory cell phenotype, and lung proteome. RESULTS: High-soluble-fiber diet increased the abundance of short-chain fatty acid-producing bacteria, with parallel increases in plasma propionate levels, and reduced the abundance of disease-related bacterial genera such as Staphylococcus, Clostridioides, and Streptococcus in hypoxic mice with parallel decreases in plasma levels of p-cresol sulfate. High-soluble-fiber diet decreased hypoxia-induced elevations of right ventricular systolic pressure and pulmonary vascular resistance. These changes were associated with reduced proportions of interstitial macrophages, dendritic cells, and nonclassical monocytes. Whole-lung proteomics revealed proteins and molecular pathways that may explain the effect of soluble-fiber supplementation. CONCLUSIONS: This study demonstrates for the first time that a high-soluble-fiber diet attenuates hypoxia-induced pulmonary vascular remodeling and the development of pulmonary hypertension in a mouse model of hypoxic pulmonary hypertension and highlights diet-derived metabolites that may have an immuno-modulatory role in the lung.


Assuntos
Hipertensão Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/complicações , Remodelação Vascular , Pulmão/metabolismo , Circulação Pulmonar/fisiologia , Hipóxia/metabolismo , Artéria Pulmonar/metabolismo
7.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511580

RESUMO

Kinase Suppressor of RAS 1 (KSR1) is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS-mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E-transformed melanoma cell line. KSR1 loss produced a complex phenotype characterised by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas ras/metabolismo
8.
Br J Cancer ; 129(6): 1022-1031, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507543

RESUMO

BACKGROUND: The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS: Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS: PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Leucócitos Mononucleares/metabolismo , Terapia Neoadjuvante , Neoplasias/tratamento farmacológico , Fenótipo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia
9.
J Matern Fetal Neonatal Med ; 36(1): 2183467, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36935364

RESUMO

BACKGROUND: Inflammation is associated with many disorders of preterm infants including periventricular leukomalacia, chronic lung disease, and necrotizing enterocolitis. Activated protein c (APC) has shown positive immunomodulatory effects. OBJECTIVES: We aimed to study neutrophil and monocyte function in response to lipopolysaccharide (LPS) and APC stimulation ex vivo in preterm infants <32 weeks gestation over the first week of life compared to neonatal and adult controls. METHODS: Peripheral blood was taken on day 1, 3, and 7 and stimulated with LPS in the absence or presence of APC. Expression of toll-like receptor 4 (TLR4) and CD11b and reactive oxygen intermediate (ROI) release from neutrophils and monocytes was examined by flow cytometry. RESULTS: LPS induced neutrophil ROI in adults and preterm infants and was significantly reduced by APC. Baseline and LPS-induced monocyte ROI production in preterm neonates was increased compared to adult and term controls. Neutrophil TLR4 baseline expression was higher in term controls compared to preterm infants. CONCLUSION: Increased systemic ROI release in preterm infants may mediate tissue damage, ROI was reduced by APC. However, due to the high risk of hemorrhage further examination of APC mutant forms with anti-inflammatory but decreased anticoagulant properties is merited.


Assuntos
Recém-Nascido Prematuro , Neutrófilos , Adulto , Lactente , Recém-Nascido , Humanos , Neutrófilos/metabolismo , Monócitos/metabolismo , Proteína C/metabolismo , Proteína C/farmacologia , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia
10.
J Biotechnol ; 361: 1-11, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410532

RESUMO

Acid-casein production generates waste streams that are rich in nitrogen (in the form of protein and nitrate) and phosphate. This makes this type of waste very difficult to treat using conventional techniques resulting in a high amount of operating cost and costly investment. In this research, the application of single culture or consortium of microalgae for uptake of nitrogen and phosphate in the wastewater of an acid-casein factory was investigated. The waste was a 1:1 mixture of nanofiltered whey permeate and dairy processing wastewater. Monocultures of Chlorella vulgaris, Tetradesmus obloquus, Nonnochlropsis ocenica and a consortium of the three microalgae were analyzed. The results showed that the consortium exhibited more efficient nitrogen and phosphate removal compared to the individual species. The consortium was able to rapidly hydrolyse exogenous protein present in the waste medium, removing 88% of protein and breaking down complex protein molecules into simpler compounds (such as nitrate) for assimilation into the biomass. In the first fourteen days of cultivation, the rate of nitrate assimilation by the consortium biomass was lower than that of nitrate formation from protein degradation, leading to a net increase in nitrate concentration in the medium. As protein source was depleted and biomass concentration increased, however, the rate of nitrate assimilation began to exceed that of nitrate formation allowing for net removal of nitrate. The microalgae consortium was shown to successfully bioremediate all nitrates by day 21. It was indicated that Chlorella and Nannochloropsis species were responsible for nitrogen removal in monocultures. Phosphate, on the other hand, was efficiently removed by Tetradesmus. The results indicated that a consortium cultivation of three species of microalgae led to effective elimination of both nitrogen and phosphate. Combined flow-cytometry and microscopy analyses revealed that Chlorella overtook Tetradesmus and Nannochloropsis to emerge as the dominant population in the consortium by the end of the cultivation cycle. It can be concluded that the application of microalgae consortium for simultaneous recovery of nitrogen and phosphate is a promising approach for treating acid-casein wastewater.


Assuntos
Chlorella vulgaris , Microalgas , Fosfatos/análise , Chlorella vulgaris/metabolismo , Águas Residuárias , Microalgas/metabolismo , Nitratos/análise , Nitrogênio/metabolismo , Caseínas/metabolismo , Biomassa
11.
PLoS Genet ; 18(11): e1010525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441813

RESUMO

Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.


Assuntos
Saccharomyces , Saccharomyces/genética , Saccharomyces cerevisiae/genética
12.
PLoS One ; 17(5): e0267172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604951

RESUMO

This study evaluates the degree of empathy among medical students and its influencing factors at three critical moments of their degree studies (beginning of first year and end of third and sixth years) as well as establishes low-, medium-, and high-empathy cut-off points to obtain valid and reliable results that can be extrapolated to the general population. This cross-sectional study of the eight (public and private) medical schools in the province of Madrid, used an electronic questionnaire with the Jefferson Scale of Empathy (JSE), Medical Student Well-Being Index, and other independent characteristics as measuring instruments. Of the 2,264 student participants, 1,679 (74.0%) were women, with a 50.7% participation rate. No significant differences were found in empathy levels by academic year. Regarding range, percentile and cut-off point tables were established to identify students with high, medium, and low empathy levels. Women (p<0.001), volunteer workers (p<0.001), and those preferring general specialties (internal medicine, psychiatry, pediatrics, or family medicine) scored higher on the JSE (p<0.02). Moreover, 41.6% presented high level of psychological distress. Women reported a lower well-being level and a higher risk of psychological distress (p = 0.004). In sum, the empathy of medical students in Madrid did not differ among the three critical moments of their university studies. The established cut-off points could be taken into account when accessing the medical degree and identifying students with low levels of empathy to implement curricular interventions to rectify this perceived deficiency. There was a high percentage of medical students with high levels of psychological distress.


Assuntos
Empatia , Estudantes de Medicina , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Faculdades de Medicina , Espanha , Estudantes de Medicina/psicologia , Inquéritos e Questionários
13.
J Immunol ; 208(10): 2363-2375, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35477686

RESUMO

CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.


Assuntos
Dióxido de Carbono , Anidrase Carbônica II , Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia/enzimologia , Hipercapnia/metabolismo , Isoenzimas
14.
Pathol Res Pract ; 230: 153756, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032832

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSC) have demonstrated ability to improve diabetic nephropathy (DN) in experimental models, as well as by improving kidney endogenous progenitor cells proliferation and differentiation. Many studies have demonstrated the effect of hypoxia on MSC improving their functionality but the potential enhancement of the nephroprotective properties of MSC cultured under low oxygen concentration has been explored in few studies, none of them in the context of DN. On the other hand, diabetes is associated with abnormalities in MSCs functionality. These findings related to the hypoxia preconditioning ability to enhance adipose-tissue derived-MSC (ASC) performance have led us to wonder if hypoxia could increase the known beneficial effect of normal ASC in DN and if it could correct the expected inability of diabetic rat-derived ASC to exert this effect in vivo. To answer these questions, in the present study we have used ASC from healthy and diabetic-induced rats, cultured under standard conditions or hypoxia preconditioned, in a DN rat model induced by streptozotocin (STZ). METHODS: Diabetes was induced in Wistar-rats by 60 mg/kg streptozotocin (STZ) intraperitoneal injection. Fifteen days thereafter, five diabetic-induced rats and five healthy, previously injected with saline, were sacrificed and used as ASC donors . Both healthy and diabetic rat-derived ASC (cASC and dASC, respectively) were cultured under standard conditions (21%O2)(N) or were subjected to a 48 h conditioning period in hypoxia (3%O2)(H). Thus, four types of cells were generated depending on their origin (healthy or diabetic-induced rats) and the culture conditions(N or H):cASC-N, cASC-H, dASC-N and dASC-H. DN experimental study were carried out fifteen days after STZ induction of diabetes in fifty-two healthy rats. DN-induced-animals were randomly assigned to be injected with 200 µL saline as placebo or with 3 × 106 cASC-N, cASC-H, dASC-N or dASC-H, according to the study group. Serum glucose, urea and creatinine, and urine albumin levels were measured at 2-weeks intervals until day+ 45 after ND-induction.Animals were sacrificed and kidneys extracted for histopathological and transmission electron microcopy analysis RESULTS: None of the four study groups that received cell treatment showed significant changes in serum glucose, urea and creatinine levels, urine albumin concentration and body weight compared to placebo ND-induced group. Interestingly, only the group that received cASC-H showed a reduction in glucose and creatinine levels although it did not reach statistical significance.All DN-induced groups treated with ASC reduced significantly renal lesions such as mesangial expansion, mesangiolysis, microaneurysms and acute tubular necrosis compared to ND-induced placebo group (p ≤ 0.05). Renal injuries such as clear tubular cell changes, thickening of tubular basement membrane, tubular cysts and interstitial fibrosis significantly showed reduction in ND-induced rats treated with cASC-H regarding to their received cASCN (p ≤ 0.05). Non statistical differences were observed in the improvement capacity of cASC and dASC culture under standard condition.However, hypoxia preconditioning reduces the presence of tubular cysts (p ≤ 0.01). CONCLUSIONS: Hypoxia preconditioning enhances the ability of healthy rat-derived ASC to improve kidney injury in a rat model of DN. Moreover, diabetic-derived ASC exhibits a similar ability to healthy ASC which is clearly more than expected, but it is not significantly modified by hypoxia preconditioning.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Nefropatias Diabéticas/cirurgia , Rim/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Albuminúria/induzido quimicamente , Albuminúria/cirurgia , Albuminúria/urina , Animais , Glicemia/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Creatinina/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Fibrose , Rim/metabolismo , Masculino , Ratos Wistar , Estreptozocina , Ureia/sangue
15.
Front Immunol ; 12: 767359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966388

RESUMO

Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/imunologia , Linfócitos T/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Masculino , Melioidose/microbiologia , Melioidose/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia
16.
J Thromb Haemost ; 19(10): 2583-2595, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34161660

RESUMO

BACKGROUND: Rivaroxaban, a direct oral factor Xa inhibitor, mediates anti-inflammatory and cardiovascular-protective effects besides its well-established anticoagulant properties; however, these remain poorly characterized. Extracellular vesicles (EVs) are important circulating messengers regulating a myriad of biological and pathological processes and may be highly relevant to the pathophysiology of atrial fibrillation as they reflect alterations in platelet and endothelial biology. However, the effects of rivaroxaban on circulating pro-inflammatory EVs remain unknown. OBJECTIVES: We hypothesized that rivaroxaban's anti-inflammatory properties are reflected upon differential molecular profiles of circulating EVs. METHODS: Differences in circulating EV profiles were assessed using a combination of single vesicle analysis by Nanoparticle Tracking Analysis and flow cytometry, and proteomics. RESULTS: We demonstrate, for the first time, that rivaroxaban-treated non-valvular atrial fibrillation (NVAF) patients (n=8) exhibit attenuated inflammation compared with matched warfarin controls (n=15). Circulating EV profiles were fundamentally altered. Moreover, quantitative proteomic analysis of enriched plasma EVs from six pooled biological donors per treatment group revealed a profound decrease in highly pro-inflammatory protein expression and complement factors, together with increased expression of negative regulators of inflammatory pathways. Crucially, a reduction in circulating levels of soluble P-selectin was observed in rivaroxaban-treated patients (compared with warfarin controls), which negatively correlated with the patient's time on treatment. CONCLUSION: Collectively, these data demonstrate that NVAF patients anticoagulated with rivaroxaban (compared with warfarin) exhibit both a reduced pro-inflammatory state and evidence of reduced endothelial activation. These findings are of translational relevance toward characterizing the anti-inflammatory and cardiovascular-protective mechanisms associated with rivaroxaban therapy.


Assuntos
Fibrilação Atrial , Vesículas Extracelulares , Acidente Vascular Cerebral , Anticoagulantes , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Inibidores do Fator Xa , Humanos , Proteômica , Estudos Retrospectivos , Rivaroxabana , Varfarina
17.
JCI Insight ; 6(8)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784253

RESUMO

Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1-/-, Phd2+/-, and Phd3-/-) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/-) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/- (but not PHI or Phd1-/-) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/- induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/--mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.


Assuntos
Anastomose Cirúrgica , Colo/metabolismo , Macrófagos/metabolismo , Prolil Hidroxilases/metabolismo , Abdome/cirurgia , Aminoácidos Dicarboxílicos , Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica , Animais , Células CACO-2 , Colágeno/metabolismo , Colo/patologia , Colo/cirurgia , Feminino , Humanos , Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Sepse , Cicatrização
18.
Aging (Albany NY) ; 12(16): 15882-15905, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32745074

RESUMO

Articular cartilage and synovial tissue from patients with osteoarthritis (OA) show an overactivity of connexin43 (Cx43) and accumulation of senescent cells associated with disrupted tissue regeneration and disease progression. The aim of this study was to determine the effect of oleuropein on Cx43 and cellular senescence for tissue engineering and regenerative medicine strategies for OA treatment. Oleuropein regulates Cx43 promoter activity and enhances the propensity of hMSCs to differentiate into chondrocytes and bone cells, reducing adipogenesis. This small molecule reduce Cx43 levels and decrease Twist-1 activity in osteoarthritic chondrocytes (OACs), leading to redifferentiation, restoring the synthesis of cartilage ECM components (Col2A1 and proteoglycans), and reducing the inflammatory and catabolic factors mediated by NF-kB (IL-1ß, IL-6, COX-2 and MMP-3), in addition to lowering cellular senescence in OACs, synovial and bone cells. Our in vitro results demonstrate the use of olive-derived polyphenols, such as oleuropein, as potentially effective therapeutic agents to improve chondrogenesis of hMSCs, to induce chondrocyte re-differentiation in OACs and clearing out senescent cells in joint tissues in order to prevent or stop the progression of the disease.


Assuntos
Antirreumáticos/farmacologia , Cartilagem Articular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Iridoides/farmacologia , Olea , Osteoartrite/tratamento farmacológico , Polifenóis/farmacologia , Regeneração/efeitos dos fármacos , Idoso , Antirreumáticos/isolamento & purificação , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Linhagem Celular , Microambiente Celular , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo II/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Frutas , Humanos , Glucosídeos Iridoides , Iridoides/isolamento & purificação , Masculino , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Olea/química , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteogênese/efeitos dos fármacos , Polifenóis/isolamento & purificação , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
19.
Parasite Immunol ; 42(11): e12779, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32725900

RESUMO

BACKGROUND: Fasciola hepatica causes economically important disease in livestock worldwide. The relevance of this parasitic infection extends beyond its direct consequences due to its immunoregulatory properties. OBJECTIVES: Given the importance of the T helper 1 (Th1) immune response in controlling infections with Mycobacterium avium subspecies paratuberculosis (MAP) in cattle, we aimed to establish the immunological consequences that co-infection with F. hepatica might have on the course of Johne's disease (JD). METHODS: This study compared the in vitro response of bovine immune cells to infection with MAP or exposure to MAP antigens following F. hepatica infection or stimulation with F. hepatica products. RESULTS: We found a decreased proliferation of peripheral blood mononuclear cells (PBMCs) after infection with F. hepatica. This reduction was inversely correlated with fluke burden. Pre-stimulation with F. hepatica molecules produced a significant reduction of ileocaecal lymph node leucocyte proliferation in response to MAP antigens. Additionally,F. hepatica products reduced expression of the CD14 receptor by macrophages and increased levels of apoptosis and bacterial (MAP) uptake. CONCLUSIONS: Overall, F. hepatica infection had little impact on the in vitro response of immune cells to MAP, whereas in vitro co-stimulation with F. hepatica molecules had a measurable effect. Whether this is likely to affect JD progression during in vivo chronic conditions remains unclear.


Assuntos
Antígenos de Bactérias/imunologia , Doenças dos Bovinos/imunologia , Fasciola hepatica/imunologia , Imunidade , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/imunologia , Animais , Apoptose , Bovinos , Doenças dos Bovinos/parasitologia , Proliferação de Células , Coinfecção , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Paratuberculose/parasitologia , Células Th1/imunologia
20.
J Phys Act Health ; 17(7): 744-755, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531762

RESUMO

BACKGROUND: The purpose of this study was to evaluate the feasibility and effectiveness of a high-intensity semisupervised exercise program alongside lifestyle counseling as an intervention for managing cardiometabolic risk in sedentary adults. METHODS: A 40-week 3-arm randomized controlled clinical trial (16-wk intervention and 24-wk follow-up) was used. Seventy-five sedentary adults (34-55 y) with at least 1 cardiometabolic risk factor were randomized into one of the following arms: (1) aerobic interval training (AIT) plus lifestyle counseling (n = 25), (2) low- to moderate-intensity continuous training plus lifestyle counseling (traditional continuous training, TCT) (n = 27), or (3) lifestyle counseling alone (COU) (n = 23). Metabolic syndrome severity scores, accelerometer-based physical activity, and self-reported dietary habits were assessed at baseline, after the intervention, and at follow-up. RESULTS: AIT was well accepted with high enjoyment scores. All groups showed similar improvements in metabolic syndrome severity scores (standardized effect size = 0.46) and dietary habits (standardized effect size = 0.30). Moderate to vigorous physical activity increased in all study groups, with the number of responders higher in AIT and TCT groups (50%) than in COU group (21%). Both AIT and TCT had a greater impact on sedentary behavior than COU (63.5% vs 30.4% responders). CONCLUSIONS: AIT appears to be a feasible and effective strategy in sedentary individuals with cardiometabolic risk factors. AIT could be included in intervention programs tackling unhealthy lifestyles.


Assuntos
Doenças Cardiovasculares , Exercício Físico , Adulto , Doenças Cardiovasculares/prevenção & controle , Aconselhamento , Humanos , Estilo de Vida , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...