Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165977, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980460

RESUMO

The release of protons (H+) occurs via the Na+/H+ exchanger isoform 1 (NHE1) leading to a stable intracellular pH (pHi) in MDCK cells. Chronic intake of arsenic trioxide (ATO), in the drinking water, associated with higher morbidity and mortality in neoplastic tissues. ATO increased NHE1 expression and activity, resulting in intracellular alkalization and higher MDCK cells proliferation. Since the pro-proliferative transcription factor activator protein 1 (AP-1) gets activated by al alkaline intracellular pH, a phenomenon paralleled by higher NHEs activity, we asked whether ATO-increased MDCK cells proliferation involves AP-1-dependent NHE1 activation. Cells were exposed (48 h) to ATO (0.05 µmol/L), SR11302 (1 µmol/L, AP-1 inhibitor), HOE-694 (100 nmol/L, NHE1 inhibitor) and EIPA (50 µmol/L, NHE1/NHE3 inhibitor) in the presence of S3226 (10 µmol/L, NHE3 inhibitor), concanamycin A (0.1 µmol/L, V-ATPases inhibitor), and Schering (10 µmol/L, H+/K+-ATPase inhibitor). [3H]Thymidine incorporation, cell counting, wound healing assay, and AP-1 activity were determined. The pHi was measured in cells pre-loaded (10 min) with 2,7-bicarboxyethyl-5,6-carboxyfluorescein acetoxymethyl ester (12 mmol/L) and exposed to NH4Cl (20 mmol/L). Basal pHi and recovery rate (dpHi/dt), intracellular buffer capacity (ßi) and H+ flux (JH+) were determined. NHE1 protein abundance was measured by Western blotting and immunofluorescence. ATO increased the cell growth (1.5 fold), basal pHi (0.4 pHi units), dpHi/dt (1.8 fold), JH+ (1.4 fold), AP-1 activity and NHE1 protein abundance (1.3 fold). ATO also increased (1.5 fold) the nuclear/perinuclear NHE1 immunosignal. SR11302 and HOE-694 blocked ATO effects. Thus, ATO-increased proliferation resulted from AP-1-dependent NHE1 activation in MDCK cells.


Assuntos
Trióxido de Arsênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/biossíntese , Fator de Transcrição AP-1/metabolismo , Animais , Cães , Células Madin Darby de Rim Canino
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1192-1202, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410170

RESUMO

l-Arginine is taken up via the cationic amino acid transporters (system y+/CATs) and system y+L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y+/CATs and system y+L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH4Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 µmol/L, 10 s, 37 °C) in the absence or presence of 200 µmol/L N-ethylmaleimide (NEM) (system y+/CATs inhibitor) or 2 mmol/L l-leucine (systemy+L substrate) was measured. Protein abundance for eNOS and serine1177 or threonine495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y+L but not system y+/CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine1177 phosphorylation. Thus, system y+L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs.


Assuntos
Sistema y+L de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Etilmaleimida/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio
3.
Endocrinology ; 156(10): 3625-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26207343

RESUMO

Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.


Assuntos
Retículo Endoplasmático/enzimologia , Mutação , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertase 1/genética , Animais , Biocatálise , Western Blotting , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Genótipo , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pró-Proteína Convertase 1/metabolismo , Ligação Proteica , Proteólise
4.
Biochem Pharmacol ; 96(2): 107-18, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26003844

RESUMO

The proprotein convertase furin is implicated in a variety of pathogenic processes such as bacterial toxin activation, viral propagation, and cancer. Several groups have identified non-peptide compounds with high inhibitory potency against furin in vitro, although their efficacy in various cell-based assays is largely unknown. In this study we show that certain guanidinylated 2,5-dideoxystreptamine derivatives exhibit interesting ex vivo properties. Compound 1b (1,1'-(4-((2,4-diguanidino-5-(4-guanidinophenoxy)cyclohexyl)oxy)-1,3-phenylene)diguanidine) is a potent and cell-permeable inhibitor of cellular furin, since it was able to retard tumor cell migration, block release of a Golgi reporter, and protect cells against Bacillus anthracis (anthrax) and Pseudomonas aeruginosa intoxication, with no evident cell toxicity. Other compounds based on the 2,5-dideoxystreptamine scaffold, such as compound 1g (1,1'-(4,6-bis(4-guanidinophenoxy)cyclohexane-1,3-diyl)diguanidine) also efficiently protected cells against anthrax, but displayed only moderate protection against Pseudomonas exotoxin A and did not inhibit cell migration, suggesting poor cell permeability. Certain bis-guanidinophenyl ether derivatives such as 2f (1,3-bis(2,4-diguanidinophenoxy) benzene) exhibited micromolar potency against furin in vitro, low cell toxicity, and highly efficient protection against anthrax toxin; this compound only slightly inhibited intracellular furin. Thus, compounds 1g and 2f both represent potent furin inhibitors at the cell surface with low intracellular inhibitory action, and these particular compounds might therefore be of preferred therapeutic interest in the treatment of certain bacterial and viral infections.


Assuntos
Antibacterianos/química , Furina/antagonistas & inibidores , Guanidinas/química , Hexosaminas/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/farmacologia , Linhagem Celular , Membrana Celular/enzimologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Guanidinas/síntese química , Guanidinas/farmacologia , Hexosaminas/síntese química , Hexosaminas/farmacologia , Humanos , Espaço Intracelular/enzimologia , Camundongos , Modelos Moleculares , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
5.
Endocrinology ; 155(9): 3434-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24932808

RESUMO

Satiety and appetite signaling are accomplished by circulating peptide hormones. These peptide hormones require processing from larger precursors to become bioactive, often by the proprotein convertase 1/3 (PC1/3). Several subcellular maturation steps are necessary for PC1/3 to achieve its optimal enzymatic activity. Certain PC1/3 variants found in the general population slightly attenuate its enzymatic activity and are associated with obesity and diabetes. However, mutations that increase PC1/3 activity and/or affect its specificity could also have physiological consequences. We here present data showing that the known human Ser357Gly PC1/3 mutant (PC1/3(S357G)) represents a PC1/3 hypermorph. Conditioned media from human embryonic kidney-293 cells transfected with PC1/3(WT) and PC1/3(S357G) were collected and enzymatic activity characterized. PC1/3(S357G) exhibited a lower calcium dependence; a higher pH optimum (neutral); and a higher resistance to peptide inhibitors than the wild-type enzyme. PC1/3(S357G) exhibited increased cleavage to the C-terminally truncated form, and kinetic parameters of the full-length and truncated mutant enzymes were also altered. Lastly, the S357G mutation broadened the specificity of the enzyme; we detected PC2-like specificity on the substrate proCART, the precursor of the cocaine- and amphetamine regulated transcript neuropeptide known to be associated with obesity. The production of another anorexigenic peptide normally synthesized only by PC2, αMSH, was increased when proopiomelanocortin was coexpressed with PC1/3(S357G). Considering the aberrant enzymatic profile of PC1/3(S357G), we hypothesize that this enzyme possesses unusual processing activity that may significantly change the profile of circulating peptide hormones.


Assuntos
Mutação de Sentido Incorreto , Pró-Proteína Convertase 1/química , Pró-Proteína Convertase 1/genética , Sequência de Aminoácidos , Estabilidade Enzimática , Glicina/genética , Glicina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Pró-Proteína Convertase 1/metabolismo , Estrutura Terciária de Proteína , Serina/genética , Serina/metabolismo
6.
Endocrinology ; 155(7): 2391-401, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24828610

RESUMO

Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.


Assuntos
Mutação , Obesidade/genética , Pró-Proteína Convertase 1/genética , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Immunoblotting , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Cinética , Masculino , Camundongos , Microscopia Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Obesidade/metabolismo , Pró-Proteína Convertase 1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico/genética , Proteólise , Ubiquitina/metabolismo
7.
J Neurosci Res ; 92(7): 937-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753218

RESUMO

The lateral septum (LS) is a brain nucleus implicated in the addictive process. This study investigated whether withdrawal from chronic amphetamine (AMPH) induces alterations in dopamine (DA) transmission within the LS. Male Sprague-Dawley rats were injected with AMPH (2.5 mg/kg i.p.) or saline during 14 days and thereafter subjected to 24 hr or 14 days of withdrawal. After these withdrawal periods, we measured DA extracellular levels by in vivo microdialysis, DA tissue levels, and tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT2) expression in the LS. Our results showed a significant decrease in K(+) -induced release of DA in the LS of AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. There were no significant differences in DA tissue content and TH expression. Interestingly, there was a decrease of LS VMAT2 expression in AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. This is the first neurochemical evidence showing that withdrawal from repeated AMPH administration decreases K(+) -induced DA release in the rat LS. Our results suggest that this decrease in DA releasability could be due to a decrease in DA vesicular uptake. The possibility that these neurochemical changes are associated with AMPH abstinence syndrome should be further explored.


Assuntos
Anfetamina/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dopamina/metabolismo , Núcleos Septais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
8.
PLoS One ; 8(3): e59695, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527253

RESUMO

Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1-41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24-37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Precursores de Proteínas/genética , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Animais , Western Blotting , Fluorescência , Proteínas de Fluorescência Verde , Humanos , Immunoblotting , Imuno-Histoquímica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Ressonância Magnética Nuclear Biomolecular , Células PC12 , Estrutura Terciária de Proteína/genética , Ratos , Transfecção
9.
Neuropeptides ; 45(4): 273-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21624661

RESUMO

Corticotropin releasing factor binding protein (CRF-BP) is a 37kDa glycoprotein that binds CRF with high affinity. CRF-BP controls CRF levels within plasma during human pregnancy. It has also been shown that CRF-BP is expressed in various brain nuclei. Main actions that have been proposed for brain CRF-BP are either decreasing available CRF or facilitating CRF ligand-induced activation of CRF-R2 receptors. For both actions, it is necessary the release of CRF-BP from CRF-BP expressing neurons. However, the secretion mode of CRF-BP is currently unknown. We used heterologous expression of CRF-BP-Flag in PC12 cells and in primary culture of rat cortical neurons to study CRF-BP secretion mode. We observed that CRF-BP-Flag immunoreactivity presents the typical cytoplasmatic punctuate pattern that has been described for neuropeptides and proteins that enter the regulated secretory pathway in PC12 cells. Quantitative analysis of double immunofluorescence confocal images showed that CRF-BP-Flag colocalizes with secretogranin II, marker of secretory granules, both in PC12 and in primary-cultured rat neurons. Furthermore, CRF-BP-Flag is released from PC12 cells upon high K(+)-depolarization. Thus, our results show that CRF-BP is efficiently sorted to the regulated secretory pathway in two cellular contexts, suggesting that the extracellular levels of CRF-BP in the central nervous system depends on neuronal activity.


Assuntos
Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Via Secretória/fisiologia , Animais , Células Cultivadas , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Células Neuroendócrinas/citologia , Neurônios/citologia , Células PC12 , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...