Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Arthroplasty ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479635

RESUMO

BACKGROUND: Intraprosthetic dissociation (IPD) is a complication unique to dual mobility (DM) implants where the outer polyethylene head dissociates from the inner femoral head. Increasing reports of IPD at the time of closed reduction of large head DM dislocations prompted this biomechanical study evaluating the assembly and dissociation forces of DM heads. METHODS: We tested 17 polyethylene DM heads from 5 vendors. Of the heads, 12 were highly cross-linked polyethylene (4 vendors) and 5 were infused with vitamin E (2 vendors). Heads were between 46 and 47 mm in diameter, accepting a 28 mm-inner ceramic head. Implants were assembled and disassembled using a servohydraulic machine that recorded the forces and torques applied during testing. Dissociation was tested via both axial pull-out and lever-out techniques, where lever-out simulated stem-on-acetabular component impingement. RESULTS: The initial maximum assembly force was significantly different between all vendors (P < .01) and decreased for all implants with subsequent assembly. Vendor 4-E (Link with vitamin E) heads required the highest assembly force (1,831.9 ± 81.95 N), followed by Vendor 3 (Smith & Nephew), Vendor 5 (DePuy Synthes), Vendor 1-E (Zimmer Biomet with vitamin E), Vendor 2 (Stryker), and Vendor 1 (Zimmer Biomet Arcom). Vendor 4-E implants showed the greatest dissociation resistance in both pull-out (2,059.89 N, n = 1) and lever-out (38.95 ± 2.79 Nm) tests. Vendor 1-E implants with vitamin E required higher assembly force, dissociation force, and energy than Vendor 1 heads without vitamin E. CONCLUSIONS: There were notable differences in DM assembly and dissociation forces between implants. Diminishing force was required for assembly with each additional trial across vendors. Vendor 4-E DM heads required the highest assembly and dissociation forces. Vitamin E appeared to increase the assembly and dissociation forces. Based on these results, DM polyethylene heads should not be reimplanted after dissociation, and there may be a role for establishing a minimum dissociation energy standard to minimize IPD risk.

2.
J Mass Spectrom Adv Clin Lab ; 31: 59-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38323116

RESUMO

Introduction: Human saliva contains a wealth of proteins that can be monitored for disease diagnosis and progression. Saliva, which is easy to collect, has been extensively studied for the diagnosis of numerous systemic and infectious diseases. However, the presence of amylase, the most abundant protein in saliva, can obscure the detection of low-abundance proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS), thus reducing its diagnostic utility. Objectives: In this study, we used a device to deplete salivary amylase from water-gargle samples by affinity adsorption. Following depletion, saliva proteome profiling was performed using MALDI-ToF MS on gargle samples from individuals confirmed to have COVID-19 based on nasopharyngeal (NP) swab reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: The depletion of amylase led to increased signal intensities of various peaks and the detection of previously unobserved peaks in the MALDI-ToF MS spectra. The overall specificity and sensitivity after amylase depletion were 100% and 85.17%, respectively, for detecting COVID-19. Conclusion: This simple, rapid, and inexpensive technique for depleting salivary amylase can reveal spectral diversity in saliva using MALDI-ToF MS, expose low-abundance proteins, and assist in establishing novel biomarkers for diseases.

3.
J Neurophysiol ; 129(6): 1389-1399, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162174

RESUMO

Anticipatory force control underlying dexterous manipulation has historically been understood to rely on visual object properties and on sensorimotor memories associated with previous experiences with similar objects. However, it is becoming increasingly recognized that anticipatory force control also relies on how an object is grasped. Experiments that allow unconstrained grasp contact points when preventing tilting an object with an off-centered mass show trial-to-trial variations in digit position and subsequent scaling of lift forces, all before feedback of object properties becomes available. Here, we manipulated the availability of visual information before reach onset and after grasp contact (with no vision during the reach) to determine the contribution and timing of visual information processing to the scaling of fingertip forces during dexterous manipulation at flexible contact points. Results showed that anticipatory force control was similarly successful, quantified as an appropriate compensatory torque at lift onset that counters the external torque of an object with a left and right center of mass, irrespective of the timing and availability of visual information. However, the way in which anticipatory force control was achieved varied depending on the availability of visual information. Visual information following grasp contact was associated with greater use of an asymmetric thumb and index finger grasp configuration to generate a compensatory torque and digit position variability, together with faster fingertip force scaling and sensorimotor learning. This result supports the hypothesis that visual information at a critical and functionally relevant time point following grasp contact supports variable and swift digit-based force control for dexterous object manipulation.NEW & NOTEWORTHY Humans excel in dexterous object manipulation by precisely coordinating grasp points and fingertip forces, highlighted in scenarios requiring countering object torques in advance, e.g., lifting a teacup without spilling will demand a unique digit force pattern based on the grip configuration at lift onset. Here, we show that visual information following grasp contact, a critical and functionally relevant time point, supports digit position variability and swift anticipatory force control to achieve a dexterous motor goal.


Assuntos
Dedos , Força da Mão , Humanos , Fenômenos Biomecânicos , Polegar , Aprendizagem , Desempenho Psicomotor
4.
J Mass Spectrom Adv Clin Lab ; 21: 31-41, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34518823

RESUMO

More than a year after the COVID-19 pandemic was declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Compared to the nasopharyngeal swabs, several studies have established saliva as a more amenable specimen type for early detection of SARS-CoV-2. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry in the analysis of 60 gargle samples from human donors and compared the resultant spectra against COVID-19 status. Several standards, including isolated human serum immunoglobulins, and controls, such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus, were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this workflow. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on nasopharyngeal swabs was ≥90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study suggest that MALDI-ToF could be used to develop a relatively rapid and inexpensive COVID-19 assay.

5.
Curr Protoc ; 1(5): e145, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34004070

RESUMO

Since December 2019, SARS-CoV-2 has spread extensively throughout the world, with more than 117 million reported cases and 2.6 million deaths (Johns Hopkins coronavirus resource center, https://coronavirus.jhu.edu/map.html). Detecting the virus is the first step in diagnosing the infection, followed by quarantine to prevent transmission. Nasopharyngeal/oropharyngeal swabs (NP/OP) and saliva are two specimen types that are most often analyzed to detect SARS-CoV-2 by molecular tests that detect viral RNA or by antigen/antibody tests that detect viral proteins and/or the host immune response against the virus. Compared to antigen/antibody tests, molecular tests are highly sensitive and specific for detecting the virus. A significant drawback is that specimen collection requirements are specific to each test and cannot be interchanged with another test. Some tests are qualified to be used on NP swabs or saliva, but not both specimen types. Even with NP swabs, a test may be qualified to detect the virus only with swabs collected in viral transport medium (VTM) but not in other media. These restrictive pre-analytic steps are disadvantageous in that a lab would have to develop and validate different tests for SARS-CoV-2 depending on the specimen type and collection media, with added setup cost, infrastructure, and training requirements. To overcome these problems, we developed and validated a cost-effective multiplex reverse-transcription real-time PCR assay that can be used to detect SARS-CoV-2 in different specimen types. The assay is highly sensitive and specific, can be used to detect the virus in saliva as well as NP swabs collected in different media such as VTM, saline, and commercial preservative fluid, and serves as one test for all applications. The protocol also describes an optimal laboratory setup and unidirectional workflow for detecting SARS-CoV-2 by RT-qPCR. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Manual viral nucleic acid extraction from NP/OP swabs collected in different media, and from saliva Alternate Protocol 1: Low-throughput automated extraction on the Qiagen EZ1 Advanced XL machine (1-14 samples) Alternate Protocol 2: High-throughput automated extraction on the Kingfisher Flex machine (1-96 samples) Basic Protocol 2: Multiplex RT-qPCR protocol to detect SARS-CoV-2 Alternate Protocol 3: Multiplex one-step RT-qPCR protocol to detect SARS-CoV-2 with S and E gene probes labeled with the same fluorochrome.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Nasofaringe/virologia , Orofaringe/virologia , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Teste de Ácido Nucleico para COVID-19/economia , Humanos , Reação em Cadeia da Polimerase Multiplex/economia , Reação em Cadeia da Polimerase Multiplex/métodos , RNA Viral/análise , RNA Viral/isolamento & purificação
6.
J Virol Methods ; 291: 114100, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600849

RESUMO

SARS-CoV-2 has infected more than 30 million persons throughout the world. A subset of patients suffer serious consequences that require hospitalization and ventilator support. Current tests for SARS-CoV-2 generate qualitative results and are vital to make a diagnosis of the infection. However, they are not helpful to follow changes in viral loads after diagnosis. The ability to quantitatively assess viral levels is necessary to determine the effectiveness of therapy with anti-viral or immune agents. Viral load analysis is also necessary to determine the replicative potential of strains with different mutations, emergence of resistance to anti-viral agents and the stability of viral nucleic acid and degree of RT-PCR inhibition in different types of collection media. Quantitative viral load analysis in body fluids, plasma and tissue may be helpful to determine the effects of the infection in various organ systems. To address these needs, we developed two assays to quantitate SARS-CoV-2. The assays target either the S or E genes in the virus, produce comparable viral load results, are highly sensitive and specific and have a wide range of quantitation. We believe that these assays will be helpful to manage the clinical course of infected patients and may also help to better understand the biology of infection with SARS-CoV-2.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/isolamento & purificação , Carga Viral , COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Estudos de Avaliação como Assunto , Humanos , Limite de Detecção , Prognóstico , RNA Viral/análise , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Case Rep Hematol ; 2021: 9740281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992887

RESUMO

B-cell lymphomas are neoplastic proliferations of clonal B lymphocytes. Clonality is generally determined by PCR amplification of VDJ rearrangements in the IgH heavy chain or VJ rearrangements in Igκ/Igλ light chain genes followed by capillary electrophoresis. More recently, next-generation sequencing (NGS) has been used to detect clonality in B-cell lymphomas because of the exponential amount of information that is obtained beyond just detecting a clonal population. The additional information obtained is useful for diagnostic confirmation, prognosis assessment, and response to therapy. In this study, we utilized NGS analysis to characterize two histologically distinct lymphomas (DLBCL and CLL/SLL) that were detected contemporaneously in an asymptomatic patient. NGS analysis showed that the same VDJ rearrangement was present in nodal (DLBCL) and marrow (CLL/SLL) biopsies confirming that the DLBCL resulted from Richter's transformation of a subclinical CLL/SLL. The V region of the rearrangement remained unmutated without somatic hypermutation. In silico analysis showed that the HCDR3 sequence was heterogeneous and not stereotypic. Minimal residual disease analysis by NGS showed that the tumor clone decreased by 2.84 logs in the bone marrow after R-CHOP therapy. However, a small number of tumor cells were still detected in the peripheral blood after R-CHOP therapy. Subsequent allogeneic transplantation was successful in eradicating the tumor clone and achieving deep molecular remission. We show that NGS analysis facilitated clinical management in our patient by helping to characterize the VDJ rearrangement in detail and by tracking minimal residual disease with high sensitivity and specificity.

8.
J Am Chem Soc ; 138(36): 11485-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27571247

RESUMO

DNA glycosylases protect genomic integrity by locating and excising aberrant nucleobases. Substrate recognition and excision usually take place in an extrahelical conformation, which is often stabilized by π-stacking interactions between the lesion nucleobase and aromatic side chains in the glycosylase active site. Bacillus cereus AlkD is the only DNA glycosylase known to catalyze base excision without extruding the damaged nucleotide from the DNA helix. Instead of contacting the nucleobase itself, the AlkD active site interacts with the lesion deoxyribose through a series of C-H/π interactions. These interactions are ubiquitous in protein structures, but evidence for their catalytic significance in enzymology is lacking. Here, we show that the C-H/π interactions between AlkD and the lesion deoxyribose participate in catalysis of glycosidic bond cleavage. This is the first demonstration of a catalytic role for C-H/π interactions as intermolecular forces important to DNA repair.


Assuntos
Bacillus cereus/enzimologia , Biocatálise , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...