Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 3(7): e1602514, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740862

RESUMO

Carbonaceous asteroids may have been the precursors to the terrestrial planets, yet despite their importance, numerous attempts to model their early solar system geological history have not converged on a solution. The assumption has been that hydrothermal alteration was occurring in rocky asteroids with material properties similar to meteorites. However, these bodies would have accreted as a high-porosity aggregate of igneous clasts (chondrules) and fine-grained primordial dust, with ice filling much of the pore space. Short-lived radionuclides melted the ice, and aqueous alteration of anhydrous minerals followed. However, at the moment when the ice melted, no geological process had acted to lithify this material. It would have been a mud, rather than a rock. We tested the effect of removing the assumption of lithification. We find that if the body accretes unsorted chondrules, then large-scale mud convection is capable of producing a size-sorted chondrule population (if the body accretes an aerodynamically sorted chondrule population, then no further sorting occurs). Mud convection both moderates internal temperature and reduces variation in temperature throughout the object. As the system is thoroughly mixed, soluble elements are not fractionated, preserving primitive chemistry. Isotopic and redox heterogeneity in secondary phases over short length scales is expected, as individual particles experience a range of temperature and water-rock histories until they are brought together in their final configuration at the end of convection. These results are consistent with observations from aqueously altered meteorites (CI and CM chondrites) and spectra of primitive asteroids. The "mudball" model appears to be a general solution: Bodies spanning a ×1000 mass range show similar behavior.

3.
Sci Rep ; 7: 45206, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555619

RESUMO

Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.

4.
Science ; 325(5947): 1525-7, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19762639

RESUMO

Triangulated observations of fireballs allow us to determine orbits and fall positions for meteorites. The great majority of basaltic meteorites are derived from the asteroid 4 Vesta. We report on a recent fall that has orbital properties and an oxygen isotope composition that suggest a distinct parent body. Although its orbit was almost entirely contained within Earth's orbit, modeling indicates that it originated from the innermost main belt. Because the meteorite parent body would likely be classified as a V-type asteroid, V-type precursors for basaltic meteorites unrelated to Vesta may reside in the inner main belt. This starting location is in agreement with predictions of a planetesimal evolution model that postulates the formation of differentiated asteroids in the terrestrial planet region, with surviving fragments concentrated in the innermost main belt.

5.
Science ; 320(5872): 61-2, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18388282
6.
Philos Trans A Math Phys Eng Sci ; 363(1837): 2793-810, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16286291

RESUMO

Recent data, and modelling of the interaction between asteroids and the atmosphere, has defined a complete size-frequency distribution for terrestrial impactors, from meteorite-sized objects up to kilometre-sized asteroids, for both the upper atmosphere and the Earth's surface. Although there remain significant uncertainties in the incidence of specific size-fractions of impactors, these estimates allow us to constrain the threat posed by impacts to human populations. It is clear that impacts remain a significant natural hazard, but uniquely, they are a threat that we can accurately predict, and take steps to avoid.


Assuntos
Desastres/estatística & dados numéricos , Planeta Terra , Geologia/métodos , Meteoroides , Modelos Teóricos , Modelos de Riscos Proporcionais , Medição de Risco/métodos , Simulação por Computador , Fatores de Risco
7.
Proc Natl Acad Sci U S A ; 102(39): 13755-60, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16174733

RESUMO

Bulk chondritic meteorites and terrestrial planets show a monotonic depletion in moderately volatile and volatile elements relative to the Sun's photosphere and CI carbonaceous chondrites. Although volatile depletion was the most fundamental chemical process affecting the inner solar nebula, debate continues as to its cause. Carbonaceous chondrites are the most primitive rocks available to us, and fine-grained, volatile-rich matrix is the most primitive component in these rocks. Several volatile depletion models posit a pristine matrix, with uniform CI-like chemistry across the different chondrite groups. To understand the nature of volatile fractionation, we studied minor and trace element abundances in fine-grained matrices of a variety of carbonaceous chondrites. We find that matrix trace element abundances are characteristic for a given chondrite group; they are depleted relative to CI chondrites, but are enriched relative to bulk compositions of their parent meteorites, particularly in volatile siderophile and chalcophile elements. This enrichment produces a highly nonmonotonic trace element pattern that requires a complementary depletion in chondrule compositions to achieve a monotonic bulk. We infer that carbonaceous chondrite matrices are not pristine: they formed from a material reservoir that was already depleted in volatile and moderately volatile elements. Additional thermal processing occurred during chondrule formation, with exchange of volatile siderophile and chalcophile elements between chondrules and matrix. This chemical complementarity shows that these chondritic components formed in the same nebula region.

8.
Trends Ecol Evol ; 20(4): 175-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16701365

RESUMO

Commonly viewed solely as agents of destruction, asteroid and comet impact events can also have a beneficial influence on processes from the molecular to the evolutionary scale. On the heavily bombarded early Earth, impacts might have delivered and caused the synthesis of prebiotic compounds that eventually led to life. At the organismal and ecosystem level, impact events can provide new habitats through the shock processing of target materials and by enhancing water availability, such as within intracrater lakes. At the evolutionary level, by destroying entire groups of organisms, impacts might have been instrumental in enabling the rise of new groups, such as the dinosaurs and mammals. Here, we synthesize the emerging literature on the beneficial effects of impacts to provide a novel perspective on these extraterrestrial agents of biological change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...