Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(38): 8845-8850, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36112145

RESUMO

The excited state dynamics in two fully characterized pyridoneBODIPY-fullerene complexes were investigated using time-resolved spectroscopy. Photoexcitation was initially localized on the pyridoneBODIPY chromophore. The energy was rapidly transferred to the fullerene, which subsequently underwent ISC to form a triplet state and returned the energy to the pyridoneBODIPY via triplet-triplet energy transfer. This ping-pong energy transfer mechanism resulted in efficient (>85%) overall conversion of the excited state pyridoneBODIPY constituent despite a complete lack of ISC in the pyridoneBODIPY in the absence of the fullerene partner. The small difference in attachment chemistry for the fullerene did not impact the initial singlet energy transfer. However, the N-methylpyrrolidine bridge did slow both the triplet-triplet energy transfer and the ultimate relaxation rate of the final triplet state when compared to an isoxazole-based bridge. The rates of each step were quantified, and computational predictions were used to complement the proposed mechanism and energetics. The result demonstrated efficient triplet sensitization of a strong chromophore that lacks significant spin-orbit coupling.


Assuntos
Fulerenos , Serviços Terceirizados , Transferência de Energia , Isoxazóis , Análise Espectral
2.
Angew Chem Int Ed Engl ; 61(42): e202205575, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36017770

RESUMO

An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.

3.
J Phys Chem B ; 125(1): 360-371, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33370123

RESUMO

Several pyrene-boron-dipyrromethene (BODIPY) and pyrene-BODIPY-ferrocene derivatives with a fully conjugated pyrene fragment appended to the α-position(s) of the BODIPY core have been prepared by Knoevenagel condensation reaction and characterized by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), UV-vis, fluorescence spectroscopy, high-resolution mass spectrometry as well as X-ray crystallography. The redox properties of new donor-acceptor BODIPY dyads and triads were studied by electrochemical (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) and spectroelectrochemical approaches. Formation of weakly bonded noncovalent complexes between the new pyrene-BODIPYs and nanocarbon materials (C60, C70, single-walled carbon nanotube (SWCNT), and graphene) was studied by UV-vis, steady-state fluorescent, and time-resolved transient absorption spectroscopy. UV-vis and fluorescent spectroscopy are indicative of the much stronger and selective interaction between new dyes and (6,5)-SWCNT as well as graphene compared to that of C60 and C70 fullerenes. In agreement with these data, transient absorption spectroscopy provided no evidence for any significant change in excited-state lifetime or photoinduced charge transfer between pyrene-BODIPYs and C60 or C70 fullerenes when the pyrene-BODIPY chromophores were excited into the lowest-energy singlet excited state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations suggest that the pyrene fragments are fully conjugated into the π-system of BODIPY core, which correlates well with the experimental data.

4.
Org Biomol Chem ; 19(10): 2213-2223, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33349821

RESUMO

Photoactivatable protecting groups (PPGs) are useful for a broad range of applications ranging from biology to materials science. In chemical biology, induction of biological processes via photoactivation is a powerful strategy for achieving spatiotemporal control. The importance of cysteine, glutathione, and other bioactive thiols in regulating protein structure/activity and cell redox homeostasis makes modulation of thiol activity particularly useful. One major objective for enhancing the utility of photoactivatable protecting groups (PPGs) in living systems is creating PPGs with longer wavelength absorption maxima and efficient two-photon (TP) absorption. Toward these objectives, we developed a carboxyl- and dimethylamine-functionalized nitrodibenzofuran PPG scaffold (cDMA-NDBF) for thiol photoactivation, which has a bathochromic shift in the one-photon absorption maximum from λmax = 315 nm with the unfunctionalized NDBF scaffold to λmax = 445 nm. While cDMA-NDBF-protected thiols are stable in the presence of UV irradiation, they undergo efficient broad-spectrum TP photolysis at wavelengths as long as 900 nm. To demonstrate the wavelength orthogonality of cDMA-NDBF and NDBF photolysis in a biological setting, caged farnesyltransferase enzyme inhibitors (FTI) were prepared and selectively photoactivated in live cells using 850-900 nm TP light for cDMA-NDBF-FTI and 300 nm UV light for NDBF-FTI. These experiments represent the first demonstration of thiol photoactivation at wavelengths above 800 nm. Consequently, cDMA-NDBF-caged thiols should have broad applicability in a wide range of experiments in chemical biology and materials science.


Assuntos
Benzofuranos/química , Inibidores Enzimáticos/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Benzofuranos/síntese química , Benzofuranos/efeitos da radiação , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/efeitos da radiação , Farnesiltranstransferase/antagonistas & inibidores , Raios Infravermelhos , Células Madin Darby de Rim Canino , Fotólise/efeitos da radiação , Fótons , Compostos de Sulfidrila/química , Compostos de Sulfidrila/efeitos da radiação
5.
ACS Omega ; 5(44): 28656-28662, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33195918

RESUMO

The electronic communication between two ferrocene groups in the electron-deficient expanded aza-BODIPY analogue of zinc manitoba-dipyrromethene (MB-DIPY) was probed by spectroscopic, electrochemical, spectroelectrochemical, and theoretical methods. The excited-state dynamics involved sub-ps formation of the charge-separated state in the organometallic zinc MB-DIPYs, followed by recovery of the ground state via charge recombination in 12 ps. The excited-state behavior was contrasted with that observed in the parent complex that lacked the ferrocene electron donors and has a much longer excited-state lifetime (670 ps for the singlet state). Much longer decay times observed for the parent complex without ferrocene confirm that the main quenching mechanism in the ferrocene-containing 4 is reflective of the ultrafast ferrocene-to-MB-DIPY core charge transfer (CT).

6.
J Phys Chem B ; 124(41): 9144-9153, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32955885

RESUMO

The ultrafast transient absorption spectrum of 1-butyl-1-methyl-pyrrolidinium dicyanamide, [Pyr1,4+][DCA-], was measured in the visible and near-infrared (IR) spectral regions. Excitation of the liquid at 4.6 eV created initially delocalized and highly reactive electrons that either geminately recombined (69%) or localized onto a cavity with a time constant of ∼300 fs. Electron localization was reflected in the evolution of the TA spectrum and the time-dependent loss of reactivity with a dichloromethane quencher. The delocalized initial state and spectrum of the free electrons were consistent with computational predictions by Xu and Margulis [ J. Phys. Chem. B, 2015, 119, 532-542] on excess electrons in [Pyr1,4+][DCA-]. The computational study considered two possible localization mechanisms for excess electrons, localization on ions, and localization on cavities. In the case of photogenerated electron-hole pairs, the results presented here demonstrate localization to cavities as the dominant channel. Following localization onto a cavity, the free electrons underwent solvation and loss of reactivity with the quencher with rates that slowed in time. The dynamics were similar to an analogous prior study on the related liquid [Pyr1,x+][NTf2-]. One significant difference was the larger yield of free electrons from photoexcitation of [Pyr1,4+][DCA-]. This was found to primarily reflect more efficient localization onto cavities rather than a slower geminate recombination rate.

7.
J Org Chem ; 85(3): 1614-1625, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31891500

RESUMO

Photoremovable caging groups are useful for biological applications because the deprotection process can be initiated by illumination with light without the necessity of adding additional reagents such as acids or bases that can perturb biological activity. In solid phase peptide synthesis (SPPS), the most common photoremovable group used for thiol protection is the o-nitrobenzyl group and related analogues. In earlier work, we explored the use of the nitrodibenzofuran (NDBF) group for thiol protection and found it to exhibit a faster rate toward UV photolysis relative to simple nitroveratryl-based protecting groups and a useful two-photon cross-section. Here, we describe the synthesis of a new NDBF-based protecting group bearing a methoxy substituent and use it to prepare a protected form of cysteine suitable for SPPS. This reagent was then used to assemble two biologically relevant peptides and characterize their photolysis kinetics in both UV- and two-photon-mediated reactions; a two-photon action cross-section of 0.71-1.4 GM for the new protecting group was particularly notable. Finally, uncaging of these protected peptides by either UV or two-photon activation was used to initiate their subsequent enzymatic processing by the enzyme farnesyltransferase. These experiments highlight the utility of this new protecting group for SPPS and biological experiments.


Assuntos
Técnicas de Síntese em Fase Sólida , Compostos de Sulfidrila , Cisteína , Fotólise , Fótons
8.
ACS Omega ; 4(2): 2661-2668, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459501

RESUMO

A biannual chemistry demonstration-based show named "Energy and U" was created to extend the general outreach themes of science, technology, engineering, and mathematics (STEM) fields and a college education with a specific goal: to teach the first law of thermodynamics to elementary school students. The effectiveness of the program was analyzed using a clicker survey system for over 12 000 visiting students. The fraction of the students that correctly answered the question "Is it possible to create energy?" increased from 14% immediately before the show to 89% immediately after the show. Students who had seen the show at least 5 months prior were twice as likely to correctly answer at the beginning of the show, demonstrating longer-term lesson retention. Interestingly, similar trends were observed for the adult chaperones that accompanied the students and participated in the clicker survey. A statistically significant difference (>99% confidence interval) was noted between the students' responses to the questions "Can you create energy?" and "Can you destroy energy?", revealing a potential effect of word choice on the interpretation of the first law of thermodynamics despite the two questions representing complementary concepts. Student performance, measured interest in science, and desire to attend college were not correlated with standard economic indicators. This measurement is consistent with the postulate that economic biases surrounding interest in STEM fields are less pronounced in elementary school than later in high school.

9.
Org Lett ; 21(14): 5713-5718, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31283252

RESUMO

We developed a simple methodology for the preparation of stable meso-(nitrile oxide)-substituted BODIPYs, which were characterized by spectroscopic methods and X-ray crystallography. These compounds were used for the preparation of isoxazoline- or isoxazolyl-BODIPYs by 1,3-dipolar cycloaddition reaction with dipolarophiles. Several BODIPYs possess molecular rotor behavior, including viscosity-dependent fluorescence. Transient absorption spectroscopy and time-resolved fluorescence are indicative of a 3 orders of magnitude difference in the excited-state lifetime for dichloromethane and glycerol solutions.

10.
Chemistry ; 25(35): 8401-8414, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31001860

RESUMO

A series of covalent ferrocene-BODIPY-fullerene triads with the ferrocene groups conjugated to the BODIPY π-system and the fullerene acceptor linked at the boron hub by a common catecholpyrrolidine bridge were prepared and characterized by 1D and 2D NMR, UV/Vis, steady-state fluorescence spectroscopy, high-resolution mass spectrometry, and, for one of the derivatives, X-ray crystallography. Redox processes of the new compounds were investigated by electrochemical (CV and DPV) methods and spectroelectrochemistry. DFT calculations indicate that the HOMO in all triads was delocalized between ferrocene and BODIPY π-system, the LUMO was always fullerene-centered, and the catechol-centered occupied orbital was close in energy to the HOMO. TDDFT calculations were indicative of the low-energy, low-intensity charge-transfer bands originated from the ferrocene-BODIPY core to fullerene excitation, which explained the similarity of the UV/Vis spectra of the ferrocene-BODIPY dyads and ferrocene-BODIPY-fullerene triads. Photophysical properties of the new triads as well as reference BODIPY-fullerene and ferrocene-BODIPY dyads were investigated by pump-probe spectroscopy in the UV/Vis and NIR spectral regions following selective excitation of the BODIPY-based antenna. Initial charge transfer from the ferrocene to the BODIPY core was shown to outcompete sub-100 fs deactivation of the excited state mediated by the catechol bridge. However, no subsequent electron transfer to the fullerene acceptor was observed. The initial charge separated state relaxes by recombination with a time constant of 150-380 ps.

11.
Phys Chem Chem Phys ; 21(13): 6991-6998, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869701

RESUMO

Oligothiophene dyes with two to five thiophene units were anchored to oleate-capped, quantum-confined zinc oxide nanocrystals (ZnO NCs) through a cyanoacrylate functional group. While the fluorescence of the bithiophene derivative was too weak for meaningful quenching studies, the fluorescence of the dyes with three, four and five thiophene rings was quenched upon binding to the NCs. Ultrafast pump-probe spectroscopy was used to observe the singlet excited states of the free dyes dissolved in dichloromethane as well as attached to a ZnO NC dispersed in the same solvent. When the dyes were bound to ZnO NCs, ultrafast spectroscopic measurements revealed rapid disappearance of the singlet excited state and appearance of a new transient absorption at higher energy that was assigned to the oxidized dye based on the similar absorption observed upon oxidation of the dye using nitrosonium ion. The appearance lifetimes of the oxidized dyes were assigned to the excited state electron transfer and were 36 ± 2, 22.3 ± 3.9, 26.5 ± 1.5 and 19.4 ± 0.8 ps for bi-, ter-, quarter- and quinquethiophene dyes respectively. Two factors contributed to the similarity in the electron transfer lifetime. First the excited state energies of the dyes were similar, and second, the free energy for electron transfer reaction was sufficiently large to move the event into the energy-independent regime.

12.
J Phys Chem Lett ; 10(8): 1828-1832, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30924653

RESUMO

The excited-state dynamics and energetics of a series of BODIPY-derived chromophores bound to a catechol at the boron position were investigated with a combination of static and time-resolved spectroscopy, electrochemistry, and density functional theory calculations. Compared with the difluoro-BODIPY-derived parent compounds, the addition of the catechol at the boron reduced the excited-state lifetime by three orders of magnitude. Deactivation of the excited state proceeded through an intermediate charge-transfer state accessed from the initial optically excited π* state in <1 ps. Despite differences in the structures of the BODIPY derivatives and absorption maxima that spanned the visible portion of the spectrum, all compounds exhibited the same, rapid, excited-state deactivation mechanism, suggesting the generality of the observed dynamics within this class of compounds.

13.
Inorg Chem ; 56(19): 11640-11653, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28920685

RESUMO

2,3,9,10,16,17,23·24-Octakis-(9H-carbazol-9-yl) phthalocyaninato zinc(II) (3) and 2,3,9,10,16,17,23·24-octakis-(3,6-di-tert-butyl-9H-carbazole) phthalocyaninato zinc(II) (4) complexes were prepared and characterized by NMR and UV-vis spectroscopies, magnetic circular dichroism (MCD), matrix-assisted laser desorption ionization mass spectrometry, and X-ray crystallography. UV-vis and MCD data are indicative of the interligand charge-transfer nature of the broad band observed in 450-500 nm range for 3 and 4. The redox properties of 3 and 4 were probed by electrochemical and spectro-electrochemical methods, which are suggestive of phthalocyanine-centered first oxidation and reduction processes. Photophysics of 3 and 4 were investigated by steady-state fluorescence and time-resolved transient absorption spectroscopy demonstrating the influence of the carbazole substituents on deactivation from the first excited state in 3 and 4. Protonation of the meso-nitrogen atoms in 3 results in much faster deactivation kinetics from the first excited state. Spectroscopic data were correlated with density functional theory (DFT) and time-dependent DFT calculations on 3 and 4.

14.
Phys Chem Chem Phys ; 19(35): 24294-24303, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848961

RESUMO

Terthiophene dyes were synthesized having a carboxylate or a phosphonate moiety at the 2-position which serves as an anchoring group to zinc oxide nanocrystals (ZnO NCs). Electronic absorption and fluorescence measurements, combined with reduction potentials, provided estimates of -1.81 and -1.86 V vs. NHE for the excited state reduction potential of the carboxylate and phosphonate, respectively. Static quenching was observed when the dyes were bound to the surface of acetate-capped ZnO NCs having a diameter of 2.8 nm. Stern-Volmer studies conducted at several dye concentrations established that a minor fraction of the adsorbed dye remained unquenched even at 1 : 1 dye to NC ratios. Adsorption isotherm measurements established that the phosphonate binds more strongly than the carboxylate and that saturation coverage was ∼1.2 dyes per nm2 for both dyes. Ultrafast transient absorption spectroscopic experiments were used to probe excited state dynamics. In the presence of ZnO NCs, disappearance of the singlet excited state of the dye corresponded to appearance of the spectroscopic signature of the oxidized dye with a time constant of 1.5 ± 0.1 and 6.1 ± 0.2 ps, respectively, for the carboxylate and phosphonate dye. The difference in the electron transfer rates was attributed to a larger electronic coupling for the dye having the carboxylate anchoring group.

15.
Org Biomol Chem ; 14(35): 8289-300, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27529405

RESUMO

The photochemical release of chemical reagents and bioactive molecules provides a useful tool for spatio-temporal control of biological processes. However, achieving this goal requires the development of highly efficient one- and two-photon sensitive photo-cleavable protecting groups. Thiol-containing compounds play critical roles in biological systems and bioengineering applications. While potentially useful for sulfhydryl protection, the 6-bromo-7-hydroxy coumarin-4-ylmethyl (Bhc) group can undergo an undesired photoisomerization reaction upon irradiation that limits its uncaging efficiency. To address this issue, here we describe the development of 6-bromo-7-hydroxy-3-methylcoumarin-4-ylmethyl (mBhc) as an improved group for thiol-protection. One- and two-photon photolysis reactions demonstrate that a peptide containing a mBhc-caged thiol undergoes clean and efficient photo-cleavage upon irradiation without detectable photoisomer production. To test its utility for biological studies, a K-Ras-derived peptide containing an mBhc-protected thiol was prepared by solid phase peptide synthesis using Fmoc-Cys(mBhc)-OH for the introduction of the caged thiol. Irradiation of that peptide using either UV or near IR light in presence of protein farnesyltransferase (PFTase), resulted in generation of the free peptide which was then recognized by the enzyme and became farnesylated. To show the utility of this caging group in biomaterial applications, we covalently modified hydrogels with mBhc-protected cysteamine. Using multi-photon confocal microscopy, highly defined volumes of free thiols were generated inside the hydrogels and visualized via reaction with a sulfhydryl-reactive fluorophore. The simple synthesis of mBhc and its efficient removal by one- and two-photon processes make it an attractive protecting group for thiol caging in a variety of applications.

16.
Inorg Chem ; 55(19): 9549-9563, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27337270

RESUMO

Noncovalent π-π interactions between chloroboron subphthalocyanine (1), 2,3-subnaphthalocyanine (3), 1,4,8,11,15,18-(hexathiophenyl)subphthalocyanine (4), or 4-tert-butylphenoxyboron subphthalocyanine (2) with C60 and C70 fullerenes were studied by UV-vis and steady-state fluorescence spectroscopy, as well as mass (APCI, ESI, and CSI) spectrometry. Mass spectrometry experiments were suggestive of relatively weak interaction energies between compounds 1-4 and fullerenes. The formation of a new weak charge-transfer band in the NIR region was observed in solution only for subphthalocyanine 4 when titrated with C60 and C70 fullerenes. Molecular structures of the subphthalocyanines 2 and 4 as well as cocrystallite of 4 with C60 fullerene (4···C60) were studied using X-ray crystallography. One of the C60 fullerenes in the crystal structure of 4···C60 was found in the concave region between two subphthalocyanine cores, while the other three fullerenes are aligned above individual isoindole fragments of the aromatic subphthalocyanine. The excited-state dynamics in noncovalent assemblies were studied by transient absorption spectroscopy. The time-resolved photophysics data suggest that only electron-rich subphthalocyanine 4 can facilitate an electron-transfer to C60 or C70 fullerenes, while no electron-transfer from the photoexcited receptors 1-3 to fullerenes was observed in UV-vis and transient spectroscopy experiments. DFT calculations using the CAM-B3LYP exchange-correlation functional and the 6-31+G(d) basis set allowed an estimation of interaction energies for the noncovalent 1:1 and 1:2 (fullerene:subphthalocyanine) complexes. Theoretical data suggest that the weak (∼3.5-10.5 kcal/mol) van der Waals-type interaction energies tend to increase with an increase of the electron density at the subphthalocyanine core with compound 4 being the best platform for noncovalent interactions with fullerenes. DFT calculations also indicate that 1:2 (fullerene:subphthalocyanine) noncovalent complexes are more stable than the corresponding 1:1 assemblies.

17.
Phys Chem Chem Phys ; 18(16): 11454-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27058732

RESUMO

Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material.

18.
J Am Chem Soc ; 138(18): 5848-59, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27027927

RESUMO

Photoremovable protecting groups are important for a wide range of applications in peptide chemistry. Using Fmoc-Cys(Bhc-MOM)-OH, peptides containing a Bhc-protected cysteine residue can be easily prepared. However, such protected thiols can undergo isomerization to a dead-end product (a 4-methylcoumarin-3-yl thioether) upon photolysis. To circumvent that photoisomerization problem, we explored the use of nitrodibenzofuran (NDBF) for thiol protection by preparing cysteine-containing peptides where the thiol is masked with an NDBF group. This was accomplished by synthesizing Fmoc-Cys(NDBF)-OH and incorporating that residue into peptides by standard solid-phase peptide synthesis procedures. Irradiation with 365 nm light or two-photon excitation with 800 nm light resulted in efficient deprotection. To probe biological utility, thiol group uncaging was carried out using a peptide derived from the protein K-Ras4B to yield a sequence that is a known substrate for protein farnesyltransferase; irradiation of the NDBF-caged peptide in the presence of the enzyme resulted in the formation of the farnesylated product. Additionally, incubation of human ovarian carcinoma (SKOV3) cells with an NDBF-caged version of a farnesylated peptide followed by UV irradiation resulted in migration of the peptide from the cytosol/Golgi to the plasma membrane due to enzymatic palmitoylation. Overall, the high cleavage efficiency devoid of side reactions and significant two-photon cross-section of NDBF render it superior to Bhc for thiol group caging. This protecting group should be useful for a plethora of applications ranging from the development of light-activatable cysteine-containing peptides to the development of light-sensitive biomaterials.


Assuntos
Antineoplásicos/síntese química , Benzofuranos/química , Cumarínicos/química , Peptídeos/química , Peptídeos/síntese química , Compostos de Sulfidrila/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cisteína/química , Citosol/metabolismo , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Feminino , Complexo de Golgi/metabolismo , Halogenação , Humanos , Indicadores e Reagentes , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/farmacologia , Processos Fotoquímicos , Fótons , Técnicas de Síntese em Fase Sólida
19.
J Chem Phys ; 143(6): 064506, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26277144

RESUMO

Transient absorption following photodetachment of a series of neat methyl-alkyl-pyrrolidinium bis(trifluoromethylsulfonyl)amides at 6.20 eV was measured with sub-picosecond time resolution in the visible and near-IR portions of the spectrum. This series spans the onset of structuring in the liquids in the form of polarity alternation. Excitation promotes the electron into a delocalized state with a very large reactive radius. Strong transient absorption is observed in the visible spectrum with a ∼700 fs lifetime, and much weaker, long-lived absorption is observed in the near-IR spectrum. Absorption in the visible is shown to be consistent with the hole, and absorption in the near-IR is assigned to the free solvated electron. Yield of free electrons is estimated at ∼4%, is insensitive to the size of the cation, and is determined in less than 1 ps. Solvation of free electrons depends strongly on the size of the cation and correlates well with the viscosity of the liquid. In addition to radiolytic stability of the aliphatic cations, ultrafast, efficient recombination of separated charge in NTf2 (-) based ionic liquids following photo-excitation near the band-gap may prevent subsequent reactive damage associated with anions.

20.
Inorg Chem ; 54(16): 7915-28, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26220063

RESUMO

Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...