Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282433

RESUMO

Solid organ transplant recipients (SOTRs) suffer more frequent and more severe infections due to their compromised immune responses resulting from immunosuppressive treatments designed to prevent organ rejection. Pharmacological immunosuppression can adversely affect immune responses to vaccination. A cohort of kidney transplant recipients (KTRs) received their third dose of ancestral, monovalent COVID-19 vaccine in the context of a clinical trial and antibody responses to the vaccine strain, as well as to Omicron variants BA.1 and BA.5 were investigated and compared with healthy controls. Total IgG and live virus neutralizing antibody titers were reduced in KTRs compared to controls for all variants. KTRs displayed altered IgG subclass switching, with significantly lower IgG3 antibodies. Responses in KTRs were also very heterogeneous, with some individuals showing strong responses but a significant number showing no Omicron-specific neutralizing antibodies. Taken together, immune responses after COVID-19 vaccination in KTRs were not only lower than healthy controls but highly variable, indicating that simply increasing the number of vaccine doses alone may not be sufficient to provide greater protection in this population. Importance: This study addresses the challenges faced by kidney transplant recipients (KTRs) in mounting effective immune responses against COVID-19. By evaluating the antibody responses to a third dose of monovalent mRNA COVID-19 vaccine and its effectiveness against Omicron subvariants (BA.1 and BA.5), this study reveals significant reductions in both binding and neutralizing antibodies in KTRs compared to healthy controls. The research highlights altered IgG subclass switching and heterogeneous responses within the KTR population. Reduced recognition of variants, coupled with differences in IgG subclasses, decreases both the quality and quantity of protective antibodies after vaccination in KTRs. These findings underscore the need for tailored vaccination strategies for immunosuppressed populations such as KTRs. Alternative formulations and doses of COVID-19 vaccines should be considered for people with severely compromised immune systems, as more frequent vaccinations may not significantly improve the response, especially regarding neutralizing antibodies.

3.
J Virol Methods ; 329: 115004, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127186

RESUMO

BACKGROUND: Since July 23, 2022, global mpox cases reached 92,546, with over 31,000 in the United States. Asymptomatic carriage is a critical mechanism influencing the global dissemination of mpox. Seroprevalence studies are crucial for determining the epidemic's true burden, but uncertainties persist in serologic assay performance and how smallpox vaccination may influence assay interpretation. OBJECTIVES: Our study aimed to assess the performance of several diagnostic assays among mpox-positive, vaccinated, and pre-outbreak negative control samples. This investigation sought to enhance our understanding and management of future mpox outbreaks. STUDY DESIGN: Serum samples from 10 mpox-positive, five vaccinated uninfected, and 137 pre-outbreak controls were obtained for serological testing. The mpox-positive samples were obtained around 100 days post symptom onset, and vaccinated patients were sampled approximately 90 days post-vaccination. Multiple diagnostic assays were employed, including four commercial ELISAs (Abbexa, RayBioTech, FineTest, ProteoGenix) and a multiplex assay (MesoScale Diagnostics (MSD)) measuring five mpox and five smallpox antigens. RESULTS: Three commercial ELISA kits had low specificity (<50 %). The Proteogenix ELISA targeting the E8L antigen had a 94 % sensitivity and 87 % specificity. The E8L antigen on the MSD assay exhibited the greatest distinction between exposure groups, with 98 % sensitivity and 93 % specificity. CONCLUSIONS: None of the assays could distinguish between mpox-positive and vaccinated samples. The MSD assay targeting the MPXV E8L antigen demonstrated the greatest differentiation between mpox-positive and pre-outbreak negative samples. Our findings underscore the imperative to identify sensitive and specific assays to monitor population-level mpox exposure and infection.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade , Humanos , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Feminino , Adulto , Mpox/diagnóstico , Estudos Soroepidemiológicos , Testes Sorológicos/métodos , Pessoa de Meia-Idade , Adulto Jovem , Vacina Antivariólica/imunologia , Surtos de Doenças , Vacinação , Estados Unidos , Adolescente
4.
Cell Rep Med ; 5(3): 101442, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423018

RESUMO

Bivalent COVID vaccines containing mRNA for ancestral and Omicron BA.5 spike proteins do not induce stronger T cell responses to Omicron BA.5 spike proteins than monovalent vaccines that contain only ancestral spike mRNA. The reasons for this finding have not been elucidated. Here, we show that healthy donors (HDs) and people living with HIV (PLWH) on antiretroviral therapy mostly target T cell epitopes that are not affected by BA.5 mutations. We use the functional expansion of specific T cells (FEST) assay to determine the percentage of CD4+ T cells that cross-recognize both spike proteins and those that are monoreactive for each protein. We show a predominance of cross-reactive CD4+ T cells; less than 10% percent of spike-specific CD4+ T cell receptors were BA.5 monoreactive in most HDs and PLWH. Our data suggest that the current bivalent vaccines do not induce robust BA.5-monoreactive T cell responses.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Linfócitos T , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Linfócitos T CD4-Positivos
5.
J Infect Dis ; 229(1): 54-58, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37380166

RESUMO

Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.


Assuntos
Mpox , Orthopoxvirus , Humanos , Antígeno HLA-A2 , Vaccinia virus , Epitopos , Proteínas Virais
6.
J Infect Dis ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019656

RESUMO

Kidney transplant recipients (KTRs) develop decreased antibody titers to SARS-CoV-2 vaccination compared to healthy controls (HCs), but whether KTRs generate antibodies against key epitopes associated with neutralization is unknown. Plasma from 78 KTRs from a clinical trial of third doses of SARS-CoV-2 vaccines and 12 HCs underwent phage display immunoprecipitation and sequencing (PhIP-Seq) to map antibody responses against SARS-CoV-2. KTRs had lower antibody reactivity to SARS-CoV-2 than HCs, but KTRs and HCs recognized similar epitopes associated with neutralization. Thus, epitope gaps in antibody breadth of KTRs are unlikely responsible for decreased efficacy of SARS-CoV-2 vaccines in this immunosuppressed population.

7.
Front Immunol ; 14: 1266370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022602

RESUMO

Patients with inflammatory arthritis (IA) are at increased risk of severe COVID-19 due to medication-induced immunosuppression that impairs host defenses. The aim of this study was to assess antibody and B cell responses to COVID-19 mRNA vaccination in IA patients receiving immunomodulatory therapies. Adults with IA were enrolled through the Johns Hopkins Arthritis Center and compared with healthy controls (HC). Paired plasma and peripheral blood mononuclear cell (PBMC) samples were collected prior to and 30 days or 6 months following the first two doses of mRNA vaccines (D2; HC=77 and IA=31 patients), or 30 days following a third dose of mRNA vaccines (D3; HC=11 and IA=96 patients). Neutralizing antibody titers, total binding antibody titers, and B cell responses to vaccine and Omicron variants were analyzed. Anti-Spike (S) IgG and S-specific B cells developed appropriately in most IA patients following D3, with reduced responses to Omicron variants, and negligible effects of medication type or drug withholding. Neutralizing antibody responses were lower compared to healthy controls after both D2 and D3, with a small number of individuals demonstrating persistently undetectable neutralizing antibody levels. Most IA patients respond as well to mRNA COVID-19 vaccines as immunocompetent individuals by the third dose, with no evidence of improved responses following medication withholding. These data suggest that IA-associated immune impairment may not hinder immunity to COVID-19 mRNA vaccines in most individuals.


Assuntos
Formação de Anticorpos , Artrite , Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Artrite/tratamento farmacológico , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunomodulação , Leucócitos Mononucleares , Switching de Imunoglobulina , Vacinas de mRNA/imunologia , Linfócitos B/imunologia , Anticorpos Antivirais
8.
Annu Rev Immunol ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827174

RESUMO

Elite controllers are a heterogeneous group of people living with HIV who control viral replication without antiretroviral therapy. There is substantial evidence that at least some elite controllers are infected with replication-competent virus, thus they may serve as a model of a functional cure of HIV. The mechanisms responsible for virologic control have been actively studied. The most objective data support CD8+ T cell-based mechanisms of control, but other immune responses, mediated by antibodies and natural killer cells, may also play a role in controlling viral replication. In this article, we review the evidence for different mechanisms of immune control in these remarkable individuals. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

9.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698927

RESUMO

BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Linfócitos T CD4-Positivos , Células Clonais , Latência Viral
10.
Front Immunol ; 14: 1178520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744365

RESUMO

Background: High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods: A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results: We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion: These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Carga Viral , Anticorpos Anti-HIV , Antirretrovirais/uso terapêutico , Epitopos , Viremia/tratamento farmacológico , Infecções por HIV/tratamento farmacológico
11.
Nat Commun ; 14(1): 5171, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620337

RESUMO

SARS-CoV-2 variants have continuously emerged in the face of effective vaccines. Reduced neutralization against variants raises questions as to whether other antibody functions are similarly compromised, or if they might compensate for lost neutralization activity. Here, the breadth and potency of antibody recognition and effector function is surveyed following either infection or vaccination. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observe similar binding and functional breadth for healthy and immunologically vulnerable populations, but considerably greater functional antibody breadth and potency across variants associated with vaccination. In contrast, greater antibody functional activity targeting the endemic coronavirus OC43 is noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains associated with exposure history. This analysis of antibody functions suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as novel variants continue to evolve.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Humanos , Feminino , Vacinas contra COVID-19 , SARS-CoV-2 , Populações Vulneráveis , COVID-19/prevenção & controle , Anticorpos , Vacinação
12.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37104041

RESUMO

BackgroundThe SARS-CoV-2 Omicron BA.5 subvariant escapes vaccination-induced neutralizing antibodies because of mutations in the spike (S) protein. Solid organ transplant recipients (SOTRs) develop high COVID-19 morbidity and poor Omicron variant recognition after COVID-19 vaccination. T cell responses may provide a second line of defense. Therefore, understanding which vaccine regimens induce robust, conserved T cell responses is critical.MethodsWe evaluated anti-S IgG titers, subvariant pseudo-neutralization, and S-specific CD4+ and CD8+ T cell responses from SOTRs in a national, prospective, observational trial (n = 75). Participants were selected if they received 3 doses of mRNA (homologous boosting) or 2 doses of mRNA followed by Ad26.COV2.S (heterologous boosting).ResultsHomologous boosting with 3 mRNA doses induced the highest anti-S IgG titers. However, antibodies induced by both vaccine regimens demonstrated lower pseudo-neutralization against BA.5 compared with the ancestral strain. In contrast, vaccine-induced S-specific T cells maintained cross-reactivity against BA.5 compared with ancestral recognition. Homologous boosting induced higher frequencies of activated polyfunctional CD4+ T cell responses, with polyfunctional IL-21+ peripheral T follicular helper cells increased in mRNA-1273 compared with BNT162b2. IL-21+ cells correlated with antibody titers. Heterologous boosting with Ad26.COV2.S did not increase CD8+ responses compared to homologous boosting.ConclusionBoosting with the ancestral strain can induce cross-reactive T cell responses against emerging variants in SOTRs, but alternative vaccine strategies are required to induce robust CD8+ T cell responses.FundingBen-Dov Family; NIH National Institute of Allergy and Infectious Diseases (NIAID) K24AI144954, NIAID K08AI156021, NIAID K23AI157893, NIAID U01AI138897, National Institute of Diabetes and Digestive and Kidney Diseases T32DK007713, and National Cancer Institute 1U54CA260492; Johns Hopkins Vice Dean of Research Support for COVID-19 Research in Immunopathogenesis; and Emory COVID-19 research repository.


Assuntos
COVID-19 , Transplantados , Humanos , Ad26COVS1 , Vacina BNT162 , Vacinas contra COVID-19 , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Imunoglobulina G
14.
Nat Microbiol ; 8(5): 833-844, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973419

RESUMO

The development of persistent cellular reservoirs of latent human immunodeficiency virus (HIV) is a critical obstacle to viral eradication since viral rebound takes place once anti-retroviral therapy (ART) is interrupted. Previous studies show that HIV persists in myeloid cells (monocytes and macrophages) in blood and tissues in virologically suppressed people with HIV (vsPWH). However, how myeloid cells contribute to the size of the HIV reservoir and what impact they have on rebound after treatment interruption remain unclear. Here we report the development of a human monocyte-derived macrophage quantitative viral outgrowth assay (MDM-QVOA) and highly sensitive T cell detection assays to confirm purity. We assess the frequency of latent HIV in monocytes using this assay in a longitudinal cohort of vsPWH (n = 10, 100% male, ART duration 5-14 yr) and find half of the participants showed latent HIV in monocytes. In some participants, these reservoirs could be detected over several years. Additionally, we assessed HIV genomes in monocytes from 30 vsPWH (27% male, ART duration 5-22 yr) utilizing a myeloid-adapted intact proviral DNA assay (IPDA) and demonstrate that intact genomes were present in 40% of the participants and higher total HIV DNA correlated with reactivatable latent reservoirs. The virus produced in the MDM-QVOA was capable of infecting bystander cells resulting in viral spread. These findings provide further evidence that myeloid cells meet the definition of a clinically relevant HIV reservoir and emphasize that myeloid reservoirs should be included in efforts towards an HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Masculino , Humanos , Feminino , Infecções por HIV/tratamento farmacológico , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/uso terapêutico , HIV-1/genética , Latência Viral , Macrófagos
16.
Clin Infect Dis ; 76(3): e495-e498, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35959783

RESUMO

Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of preexisting antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in SOTRs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Transplante de Órgãos , Vacinas , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Transplante de Órgãos/efeitos adversos , SARS-CoV-2 , Estações do Ano , Transplantados , Vacinação
17.
Open Forum Infect Dis ; 9(9): ofac479, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36193230

RESUMO

We describe the case of a patient with AIDS who had persistent infection with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant for >80 days. The variant contained mutations that were not present in other Delta viruses in our hospital. Prolonged infection in immunosuppressed individuals may lead to evolution of SARS-CoV-2 lineages.

18.
medRxiv ; 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36172122

RESUMO

SARS-CoV-2 variants have continuously emerged even as highly effective vaccines have been widely deployed. Reduced neutralization observed against variants of concern (VOC) raises the question as to whether other antiviral antibody activities are similarly compromised, or if they might compensate for lost neutralization activity. In this study, the breadth and potency of antibody recognition and effector function was surveyed in both healthy individuals as well as immunologically vulnerable subjects following either natural infection or receipt of an mRNA vaccine. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observed similar binding and functional breadth for healthy and immunologically vulnerable populations. In contrast, considerably greater functional antibody breadth and potency across VOC was associated with vaccination than prior infection. However, greater antibody functional activity targeting the endemic coronavirus OC43 was noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains that was associated with exposure history. Probing the full-length spike and receptor binding domain (RBD) revealed that antibody-mediated Fc effector functions were better maintained against full-length spike as compared to RBD. This analysis of antibody functions in healthy and vulnerable populations across a panel of SARS-CoV-2 VOC and extending through endemic alphacoronavirus strains suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as the pandemic progresses and novel variants continue to evolve. One Sentence Summary: As compared to natural infection with SARS-CoV-2, vaccination drives superior functional antibody breadth raising hopes for candidate universal CoV vaccines.

19.
AIDS ; 36(9): 1315-1317, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833684

RESUMO

Current coronavirus disease 2019 (COVID-19) mRNA vaccines induce robust SARS-CoV-2-specific humoral and cellular responses in people with HIV (PWH). However, the rate of decay of effector immune responses has not been studied in these individuals. Here, we report a significant waning of antibody responses but persistent T-cell responses 6 months post vaccination in virally suppressed PWH with high CD4+ T-cell counts. These responses are comparable with those seen in healthy donors.


Assuntos
COVID-19 , Infecções por HIV , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA