Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Meas Tech ; 10(10): 3743-3781, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33505530

RESUMO

This study evaluates the potential of using aerosol optical depth (τ a) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.01 of the input values. The retrieval of the fine-mode radius, width and volume concentration are stable and precise if the real part of the refractive index is known. The coarse-mode properties are less accurate, but they are significantly improved when additional a priori information is available. The tests with random simulated errors show that the uncertainty in the bimodal log-normal size distribution parameters increases as the aerosol load decreases. Similarly, the reduction in the spectral range diminishes the stability of the retrieved parameters. In addition to these numerical studies, we used optical depth observations at eight AERONET locations to validate our results with the standard AERONET inversion products. We found that bimodal log-normal size distributions serve as useful input assumptions, especially when the measurements have inadequate spectral coverage and/or limited accuracy, such as moon photometry. Comparisons of the mode median radii between GRASP-AOD and AERONET indicate average differences of 0.013 µm for the fine mode and typical values of 0.2-0.3 µm for the coarse mode. The dominant mode (i.e. fine or coarse) indicates a 10 % difference in mode radii between the GRASP-AOD and AERONET inversions, and the average of the difference in volume concentration is around 17 % for both modes. The retrieved values of the fine-mode τ a(500) using GRASP-AOD are generally between those values obtained by the standard AERONET inversion and the values obtained by the AERONET spectral deconvolution algorithm (SDA), with differences typically lower than 0.02 between GRASP-AOD and both algorithms. Finally, we present some examples of application of GRASP-AOD inversion using moon photometry and the airborne PLASMA sun photometer during the ChArMEx summer 2013 campaign in the western Mediterranean.

2.
Appl Opt ; 52(11): 2226-34, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23670750

RESUMO

A calibration method is introduced to transfer calibration constants from the reference to secondary sunphotometers using a laboratory integrating sphere as a light source, instead of the traditional transferring approach performed at specific calibration sites based on sunlight. The viewing solid angle and spectral response effects of the photometer are taken into account in the transfer, and thus the method can be applied to different types of sunphotometers widely used in the field of atmospheric observation. A laboratory experiment is performed to illustrate this approach for four types of CIMEL CE318 sunphotometers belonging to the aerosol robotic network (AERONET). The laboratory calibration method shows an average difference of 1.4% from the AERONET operational calibration results, while a detailed error analysis suggests that the uncertainty agrees with the estimation and could be further improved. Using this laboratory calibration approach is expected to avoid weather influences and decrease data interruption due to operationally required periodic calibration operations. It also provides a basis for establishing a network including different sunphotometers for worldwide aerosol measurements, based on a single standard calibration reference.

3.
Appl Opt ; 49(8): 1249-56, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20220880

RESUMO

We establish a polarimetric reference for the degree of linear polarization (DOLP) measurement calibration, based on direct and reflected solar light, with a theoretical error of about 0.0012. This calibration source can be used to calibrate polarized radiometers instead of complex laboratory devices and can respond from UV to near infrared wavelengths. A two-step method for calibrating the DOLP measurement is proposed and applied to a ground-based polarized radiometer. The first step is correcting the transmittance difference between polarizer units using the direct solar beam, while the second step corrects possible bias in DOLP measurement using the reflected solar light as a reference. Based on instrument characterization, calibration results obtained with the new polarized sun-sky radiometer, CE-318-DP, are discussed and compared with laboratory results.

4.
Appl Opt ; 47(10): 1368-77, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18382558

RESUMO

Two types of sunphotometric measurement are considered in this study: direct-Sun irradiance and diffuse-sky radiance. Based on CIMEL CE318 Sun-sky radiometer characteristics, we introduce a gain-corrected solid angle that allows interconverting calibration coefficients of these two types of measurement, thus realizing a "vicarious" radiance calibration. The accuracy of the gain-corrected solid angle depends on the number of available historical calibration records. The method is easy to use, provided that at least one laboratory calibration has been made previously. Examples coming from three distinct CE318 versions belonging to the AERONET/PHOTONS network are presented to provide details on the vicarious calibration method and protocols. From the error propagation analysis and the comparison with laboratory results, the uncertainty of the vicarious radiance calibration is shown to be comparable with the laboratory one, e.g., 3%-5%.

5.
Appl Opt ; 46(9): 1548-53, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17334447

RESUMO

We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.


Assuntos
Aerossóis/análise , Aerossóis/química , Algoritmos , Poeira/análise , Interpretação de Imagem Assistida por Computador/métodos , Fotometria/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...