Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 17(1): 53, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32843059

RESUMO

BACKGROUND: Predictive in vitro models of the human blood-brain barrier (BBB) are essential in early drug discovery and development. Among available immortalized human brain capillary endothelial cell lines (BCECs), the hCMEC/D3 cell line has become the most widely used in vitro BBB model. However, monolayers of hCMEC/D3 cells form only moderately restrictive barriers, most likely because the major tight junction protein, claudin-5, is markedly downregulated. Thus, hCMEC/D3 monolayers cannot be used for vectorial drug transport experiments, which is a major disadvantage of this model. METHODS: Here we transduced hCMEC/D3 cells with a claudin-5 plasmid and compared the characteristics of these cells with those of hCMEC/D3 wildtype cells and primary cultured porcine BCECs. RESULTS: The claudin-5 transduced hCMEC/D3 exhibited expression levels (and junctional localization) of claudin-5 similar to those of primary cultured porcine BCECs. The transduced cells exhibited increased TEER values (211 Ω cm2) and reduced paracellular mannitol permeability (8.06%/h), indicating improved BBB properties; however, the barrier properties of porcine BCECs (TEER 1650 Ω cm2; mannitol permeability 3.95%/h) were not reached. Hence, vectorial transport of a selective P-glycoprotein substrate (N-desmethyl-loperamide) was not observed in claudin-5 transduced hCMEC/D3 (or wildtype) cells, whereas such drug transport occurred in porcine BCECs. CONCLUSIONS: The claudin-5 transduced hCMEC/D3 cells provide a tool to studying the contribution of claudin-5 to barrier tightness and how this can be further enhanced by additional transfections or other manipulations of this widely used in vitro model of the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Claudina-5/genética , Humanos , Modelos Neurológicos , Permeabilidade , Sus scrofa , Transfecção
2.
Antioxid Redox Signal ; 22(1): 1-14, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988310

RESUMO

UNLABELLED: The paracellular cleft within epithelia/endothelia is sealed by tight junction (TJ) proteins. Their extracellular loops (ECLs) are assumed to control paracellular permeability and are targets of pathogenes. We demonstrated that claudin-1 is crucial for paracellular tightening. Its ECL1 is essential for the sealing and contains two cysteines conserved throughout all claudins. AIMS: We prove the hypothesis that this cysteine motif forms a redox-sensitive intramolecular disulfide bridge and, hence, the claudin-1-ECL1 constitutes a functional structure which is associated to ECLs of this and other TJ proteins. RESULTS: The structure and function of claudin-1-ECL1 was elucidated by investigating sequences of this ECL as synthetic peptides, C1C2, and as recombinant proteins, and exhibited a ß-sheet binding surface flanked by an α-helix. These sequences bound to different claudins, their ECL1, and peptides with nanomolar binding constants. C-terminally truncated C1C2 (-4aaC) opened cellular barriers and the perineurium. Recombinant ECL1 formed oligomers, and bound to claudin-1 expressing cells. Oligomerization and claudin association were abolished by reducing agents, indicating intraloop disulfide bridging and redox sensitivity. INNOVATION: The structural and functional model based on our in vitro and in vivo investigations suggested that claudin-1-ECL1 constitutes a functional and ECL-binding ß-sheet, stabilized by a shielded and redox-sensitive disulfide bond. CONCLUSION: Since the ß-sheet represents a consensus sequence of claudins and further junctional proteins, a general structural feature is implied. Therefore, our model is of general relevance for the TJ assembly in normal and pathological conditions. C1C2-4aaC is a new drug enhancer that is used to improve pharmacological treatment through tissue barriers.


Assuntos
Claudina-1/química , Claudina-1/metabolismo , Animais , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Imuno-Histoquímica , Imunoprecipitação , Oxirredução , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Junções Íntimas/metabolismo
3.
J Cell Sci ; 126(Pt 2): 554-64, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203797

RESUMO

Tight junctions seal the paracellular cleft of epithelia and endothelia, form vital barriers between tissue compartments and consist of tight-junction-associated marvel proteins (TAMPs) and claudins. The function of TAMPs and the interaction with claudins are not understood. We therefore investigated the binding between the TAMPs occludin, tricellulin, and marvelD3 and their interaction with claudins in living tight-junction-free human embryonic kidney-293 cells. In contrast to claudins and occludin, tricellulin and marvelD3 showed no enrichment at cell-cell contacts indicating lack of homophilic trans-interaction between two opposing cell membranes. However, occludin, marvelD3 and tricellulin exhibited homophilic cis-interactions, along one plasma membrane, as measured by fluorescence resonance energy transfer. MarvelD3 also cis-interacted with occludin and tricellulin heterophilically. Classic claudins, such as claudin-1 to -5 may show cis-oligomerization with TAMPs, whereas the non-classic claudin-11 did not. Claudin-1 and -5 improved enrichment of occludin and tricellulin at cell-cell contacts. The low mobile claudin-1 reduced the membrane mobility of the highly mobile occludin and tricellulin, as studied by fluorescence recovery after photobleaching. Co-transfection of claudin-1 with TAMPs led to changes of the tight junction strand network of this claudin to a more physiological morphology, depicted by freeze-fracture electron microscopy. The results demonstrate multilateral interactions between the tight junction proteins, in which claudins determine the function of TAMPs and vice versa, and provide deeper insights into the tight junction assembly.


Assuntos
Claudinas/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA